Skip to main content

Advertisement

Log in

Chemical profiling of ancient bud black tea with a focus on the effects of shoot maturity and fermentation by UHPLC-HRMS

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Ancient bud black tea (ABBT) is a special kind of black tea (BT) made from the bud of ancient tea tree. However, there is limited information about its chemical composition and the effects of shoot maturity and fermentation. By UHPLC-HRMS, 208 compounds including catechins, flavonoids, phenolic acids, alkaloids and others were qualitatively and quantitatively analyzed in ABBT. By comparison with traditional BT made from one bud with multiple leaves, it was suggested that the shoot maturity has great effects on the chemical profile of BT. Most of the detected compounds exhibited lower content in ABBT, while only a little number of compounds (e.g., theaflavin-3′-gallate, theaflavin-3-gallate, theaflavin-3,3′-gallate, quercitrin, isoquercitrin, and quinic acid) showed significantly higher contents in ABBT. During fermentation, the contents of these compounds varied obviously but with inconsistent trends. Simple catechins (e.g., EC, EGCG), dimers of catechins and their derivatives (e.g., prodelphinidin B2) showed an inconsistent decreasing trend, while oxidative polymerization products such as theaflavin-3,3′-gallate and theasinensin A showed a continuous increasing trend of content. Additionally, the contents of free phenolic acids, flavonoids, caffeine and amino acids showed a decreasing trend of content, while acylated phenolic acids exhibited an opposite trend. As a result, this work revealed the chemical profile of ABBT and enhanced our understanding with respect to the effects of shoot maturity and fermentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and materials

The data supporting the results of this manuscript are available from the authors upon reasonable request.

References

  1. Chen Z, Lin Z (2015) Tea and human health: biomedical functions of tea active components and current issues. J Zhejiang Univ Sci B 16(2):87–102. https://doi.org/10.1631/jzus.B1500001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lee M, Kim H, Lee S, Kim YJ, Asamenew G, Choi J et al (2019) Characterization of catechins, theaflavins, and flavonols by leaf processing step in green and black teas (Camellia sinensis) using UPLC-DAD-QToF/MS. Eur Food Res Technol 245(5):997–1010. https://doi.org/10.1007/s00217-018-3201-6

    Article  CAS  Google Scholar 

  3. Economist F (2021) Analysis on the present situation and development prospect of market supply and demand of Chinese black tea industry in 2021 https://www.qianzhan.com/analyst/detail/220/210625-7d1c9f75.html Accessed Aug 2021

  4. Jiang H-B, Tang Y-C, Chen L-B, Wang P-S, Cai X, Yu F-L et al (2020) Survey and analysis of ancient tea plant resources in Yunnan province, China. J Plant Genet Resour 21(2):296–307. https://doi.org/10.13430/j.cnki.jpgr.20190422001

    Article  Google Scholar 

  5. Shinde A, Das S, Datta A (2013) Quality improvement of orthodox and CTC tea and performance enhancement by hybrid hot air-radio frequency (RF) dryer. J Food Eng 116(2):444–449. https://doi.org/10.1016/j.jfoodeng.2012.12.001

    Article  Google Scholar 

  6. Wang C, Lyu H, Guo Z (2021) Metabolomic and pathway changes in large-leaf, middle-leaf and small-leaf cultivars of Camellia sinensis (L.) Kuntze var. niaowangensis. Chem Biodivers 18(6):2100132. https://doi.org/10.1002/cbdv.202100132

    Article  CAS  Google Scholar 

  7. Xu Y, Liu P, Shi J, Gao Y, Wang Q, Yin J (2018) Quality development and main chemical components of Tieguanyin oolong teas processed from different parts of fresh shoots. Food Chem 249:176–183. https://doi.org/10.1016/j.foodchem.2018.01.019

    Article  CAS  PubMed  Google Scholar 

  8. Paiva L, Rego C, Lima E, Marcone M, Baptista J (2021) Comparative analysis of the polyphenols, caffeine, and antioxidant activities of green tea, white tea, and flowers from Azorean Camellia sinensis varieties affected by different harvested and processing conditions. Antioxidants 10(2):183. https://doi.org/10.3390/antiox10020183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Song R, Kelman D, Johns K (2012) Correlation between leaf age, shade levels, and characteristic beneficial natural constituents of tea (Camellia sinensis) grown in Hawaii. Food Chem 133(3):707–714. https://doi.org/10.1016/j.foodchem.2012.01.078

    Article  CAS  Google Scholar 

  10. Zhu L, Xu M, Zhu H, Wang D, Yang S, Yang C et al (2012) New flavan-3-ol dimer from green tea produced from Camellia taliensis in the Ai-Lao mountains of southwest China. J Agric Food Chem 60(49):12170–12176. https://doi.org/10.1021/jf302726t

    Article  CAS  PubMed  Google Scholar 

  11. Xu C, Liang L, Li Y, Yang T, Fan Y, Mao X et al (2021) Studies of quality development and major chemical composition of green tea processed from tea with different shoot maturity. LWT Food Sci Technol 142:111055. https://doi.org/10.1016/j.lwt.2021.111055

    Article  CAS  Google Scholar 

  12. Wang Y, Kan Z, Thompson H, Ling T, Ho C, Li D et al (2019) Impact of six typical processing methods on the chemical composition of tea leaves using a single Camellia sinensis cultivar, Longjing 43. J Agric Food Chem 67(19):5423–5436. https://doi.org/10.1021/acs.jafc.8b05140

    Article  CAS  PubMed  Google Scholar 

  13. Wan X, Xia T, Zhang Z (2015) Secondary metabolism of tea plant. Beijing, China

  14. Ngure F, Wanyoko J, Mahungu S, Shit A (2009) Catechins depletion patterns in relation to theaflavin and thearubigins formation. Food Chem 115(1):8–14. https://doi.org/10.1016/j.foodchem.2008.10.006

    Article  CAS  Google Scholar 

  15. Takemoto M, Takemoto H (2018) Synthesis of theaflavins and their functions. Molecules 23(4):918. https://doi.org/10.3390/molecules23040918

    Article  CAS  PubMed Central  Google Scholar 

  16. Muthumani T, Kumar RSS (2006) Influence of fermentation time on the development of compounds responsible for quality in black tea. Food Chem 101(1):98–102. https://doi.org/10.1016/j.foodchem.2006.01.008

    Article  CAS  Google Scholar 

  17. Tanmoy S, Vijayakumar C, Shrilekha D, Basu RA, Chandra GB, Adinpunya M (2015) Assessing biochemical changes during standardization of fermentation time and temperature for manufacturing quality black tea. J Food Sci Technol 52(4):2387–2393. https://doi.org/10.1007/s13197-013-1230-5

    Article  CAS  Google Scholar 

  18. Tan J, Dai W, Lu M, Lv H, Guo L, Zhang Y et al (2016) Study of the dynamic changes in the non-volatile chemical constituents of black tea during fermentation processing by a non-targeted metabolomics approach. Food Res Int 79:106–113. https://doi.org/10.1016/j.foodres.2015.11.018

    Article  CAS  Google Scholar 

  19. Pluskal T, Castillo S, VillarBriones A, Orešič M (2010) MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics 11(1):1. https://doi.org/10.1186/1471-2105-11-395

    Article  CAS  Google Scholar 

  20. Pezzatti J, Boccard J, Codesido S, Gagnebin Y, Joshi A, Picard D et al (2020) Implementation of liquid chromatography-high resolution mass spectrometry methods for untargeted metabolomic analyses of biological samples: a tutorial. Anal Chim Acta 1105:28–44. https://doi.org/10.1016/j.aca.2019.12.062

    Article  CAS  PubMed  Google Scholar 

  21. Yue Y, Chu G-X, Liu X-S, Tang X, Wang W, Liu G-J et al (2014) TMDB: a literature-curated database for small molecular compounds found from tea. BMC Plant Biol 14:243. https://doi.org/10.1186/s12870-014-0243-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Horai H, Arita M, Kanaya S, Nihei Y, Ikeda T, Suwa K et al (2010) MassBank: a public repository for sharing mass spectral data for life sciences. J Mass Spectrom 45(7):703–714. https://doi.org/10.1002/jms.1777

    Article  CAS  PubMed  Google Scholar 

  23. Pang Z, Chong J, Zhou G, Morais DAL, Chang L, Barrette M et al (2021) MetaboAnalyst 5.0: narrowing the gap between raw spectra and functional insights. Nucleic Acids Res 49(W1):382. https://doi.org/10.1093/nar/gkab382

    Article  CAS  Google Scholar 

  24. Luo Q, Zhang J, Li H, Wu D, Geng F, Corke H et al (2020) Green extraction of antioxidant polyphenols from green tea (Camellia sinensis). Antioxidants 9(785):785. https://doi.org/10.3390/antiox9090785

    Article  CAS  PubMed Central  Google Scholar 

  25. Qu F, Zeng W, Tong X, Feng W, Chen Y, Ni D (2020) The new insight into the influence of fermentation temperature on quality and bioactivities of black tea. LWT Food Sci Technol 117:108646. https://doi.org/10.1016/j.lwt.2019.108646

    Article  CAS  Google Scholar 

  26. Zhou J, Wu Y, Long P, Ho C, Wang Y, Kan Z et al (2019) LC-MS-Based metabolomics reveals the chemical changes of polyphenols during high-temperature roasting of large-leaf yellow tea. J Agric Food Chem 67(19):5405–5412. https://doi.org/10.1021/acs.jafc.8b05062

    Article  CAS  PubMed  Google Scholar 

  27. Xu L, Xia G, Luo Z, Liu S (2019) UHPLC analysis of major functional components in six types of Chinese teas: Constituent profile and origin consideration. LWT Food Sci Technol 102:52–57. https://doi.org/10.1016/j.lwt.2018.12.008

    Article  CAS  Google Scholar 

  28. Pan H, Zhang D, Li B, Wu Y, Tu Y (2017) A rapid UPLC method for simultaneous analysis of caffeine and 13 index polyphenols in black tea. J Chromatogr Sci 55(5):491–496. https://doi.org/10.1093/chromsci/bmw197

    Article  CAS  Google Scholar 

  29. Kuhnert N, Clifford M, Anja Muller M (2010) Oxidative cascade reactions yielding polyhydroxy-theaflavins and theacitrins in the formation of black tea thearubigins: evidence by tandem LC-MS. Food Funct 1(2):180–199. https://doi.org/10.1039/c0fo00066c

    Article  CAS  PubMed  Google Scholar 

  30. Jayasinghe L, Shevchuk A, Kuhnert N (2018) Differentiation of black tea infusions according to origin, processing and botanical varieties using multivariate statistical analysis of LC-MS data. Food Res Int 109:387–402. https://doi.org/10.1016/j.foodres.2018.03.059

    Article  CAS  PubMed  Google Scholar 

  31. Sun J, Chen P, Lin L-Z, Harnly J-M (2011) A non-targeted approach to chemical discrimination between green tea dietary supplements and green tea leaves by HPLC/MS. J AOAC Int 94(2):487–497

    Article  CAS  Google Scholar 

  32. Dai W, Tan J, Lu M, Zhu Y, Li P, Peng Q et al (2018) Metabolomics Investigation reveals that 8-C N-ethyl-2-pyrrolidinone-substituted flavan-3-ols are potential marker compounds of stored white teas. J Agric Food Chem 66(27):7209–7218. https://doi.org/10.1021/acs.jafc.8b02038

    Article  CAS  PubMed  Google Scholar 

  33. Dai W, Lou N, Xie D, Hu Z, Song H, Lu M et al (2020) N-ethyl-2-pyrrolidinone-substituted flavan-3-ols with anti-inflammatory activity in lipopolysaccharide-stimulated macrophages are storage-related marker compounds for green tea. J Agric Food Chem 68(43):12164–12172. https://doi.org/10.1021/acs.jafc.0c03952

    Article  CAS  PubMed  Google Scholar 

  34. Tanaka T, Watarumi S, Fujieda M, Kouno I (2004) New black tea polyphenol having N-ethyl-2-pyrrolidinone moiety derived from tea amino acid theanine: isolation, characterization and partial synthesis. Food Chem 93(1):81–87. https://doi.org/10.1016/j.foodchem.2004.09.013

    Article  CAS  Google Scholar 

  35. Cheng J, Wu F, Wang P, Ke J, Wan X, Qiu M et al (2018) Flavoalkaloids with pyrrolidinone ring from Chinese ancient cultivated tea Xi-Gui. J Agric Food Chem 66:7948–7957. https://doi.org/10.1021/acs.jafc.8b02266

    Article  CAS  PubMed  Google Scholar 

  36. Liu X, Yin Y, Li T, Yan Z, Hao J, Yu Z et al (2021) Effect of raw material tenderness difference on quality of green brick tea. J Huazhong Agric Univ 40(2):237–244. https://doi.org/10.13300/j.cnki.hnlkxb.2021.02.026

    Article  CAS  Google Scholar 

  37. Tan J, Engelhardt U, Lin Maiwald K (2017) Flavonoids, phenolic acids, alkaloids and theanine in different types of authentic Chinese white tea samples. Food Chem 57:8–15. https://doi.org/10.1016/j.jfca.2016.12.011

    Article  CAS  Google Scholar 

  38. Xu X, Xie H, Wang Y, Wei X (2010) A-type proanthocyanidins from lychee seeds and their antioxidant and antiviral activities. J Agric Food Chem 58(22):11667–11672. https://doi.org/10.1021/jf1033202

    Article  CAS  PubMed  Google Scholar 

  39. Tanaka T, Matsuo Y (2020) Production mechanisms of black tea polyphenols. Chem Pharm Bull 68(12):1131–1142. https://doi.org/10.1248/cpb.c20-00295

    Article  CAS  Google Scholar 

  40. Su Q, Wang S, Sun Y, Mei J, Ke L (2021) Advances in biosynthesis and regulation of plant proanthocyanidins. Chin J Cell Biol 43(1):219–229. https://doi.org/10.11844/cjcb.2021.01.0027

    Article  Google Scholar 

  41. Ozawa T, Kataoka M, Morikawa K, Negishi O (1996) Elucidation of the partial structure of polymeric thearubigins from black tea by chemical degradation. Biosci Biotechnol Biochem 60(12):2023–2027. https://doi.org/10.1271/bbb.60.2023

    Article  CAS  Google Scholar 

  42. Qian Z, Guan J, Yang F (2009) Identification and quantification of free radical scavengers in Pu-erh tea by HPLC-DAD-MS coupled online with 2,2’-azinobis (3-ethylbenzthiazolinesulfonic acid) diammonium salt assay. J Agric Food Chem 56(23):11187–11191. https://doi.org/10.1021/jf8025716

    Article  CAS  Google Scholar 

  43. Hemm M, Rider S, JosephOgas MD, Chapple C (2004) Light induces phenylpropanoid metabolism in arabidopsis roots. Plant J 38(5):765–778. https://doi.org/10.1111/j.1365-313X.2004.02089.x

    Article  CAS  PubMed  Google Scholar 

  44. Zuo Y, Chen H, Deng Y (2002) Simultaneous determination of catechins, caffeine and gallic acids in green, oolong, black and puerh teas using HPLC with a photodiode array detector. Talanta 57(2):307–316. https://doi.org/10.1016/s0039-9140(02)00030-9

    Article  CAS  PubMed  Google Scholar 

  45. Gong L, Bo J, Du Z, Li J, Sun H, Chen Y et al (2021) Metabolomics analysis of changes in metabolites during the fermentation process of congou black tea. Sci Technol Food Ind 42(21):8–16. https://doi.org/10.13386/j.issn1002-0306.2021030361

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Thanks to Mr. Kanlong Yan in Zhanglang ancient village for helping us in collection of tea samples.

Funding

This work is financially supported by the National Natural Science Foundation of PR China (Grant no. 21775058) and the Applied Basic Research Project of Yunnan Province (No. 2018FD033).

Author information

Authors and Affiliations

Authors

Contributions

DR, LY, YH: conceptualization, methodology, supervision, and project administration. YL: data curation, writing-original draft, writing-review and editing, visualization. NC: investigation, data curation, and writing-original draft. WL, HL, YL, QX, RB, JW: visualization, and investigation.

Corresponding authors

Correspondence to Dabing Ren or Lunzhao Yi.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Code availability

Not applicable.

Compliance with ethics requirements

This article does not contain any studies with animals performed by any of the authors. This article does not contain any studies with humans.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 101 KB)

Supplementary file2 (PDF 247 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Chen, N., Li, W. et al. Chemical profiling of ancient bud black tea with a focus on the effects of shoot maturity and fermentation by UHPLC-HRMS. Eur Food Res Technol 248, 1379–1393 (2022). https://doi.org/10.1007/s00217-022-03972-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-022-03972-6

Keywords

Navigation