Skip to main content
Log in

Multivariate and machine learning models to assess the heat effects on honey physicochemical, colour and NIR data

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

We evaluated the effects of pre-processing thermal treatments on the physicochemical, colour and near-infrared (NIR) spectral data of 30 honey samples. The trial was settled as a bi-factorial experimental design that considered nine experimental groups according to the fixed effects of heating treatment and honey phase: none, mild (39 °C for 30′) and high heating (55 °C for 24 h) per crystallised, bi-phase and liquid honey samples. Increasing temperatures significantly modified moisture, hydroxymethylfurfural content and lightness. The multivariate classifier models showed that NIR data of warmed crystallised and bi-phase honeys were significantly different from that of the untreated ones, while they sorted a similar assignment for all the liquid samples. The support vector machine model confirmed that the highest tested temperature represented a bias in the informative feature of NIR data, if they would be used in further analytical assessment of the intrinsic qualities of crystallised or bi-phase honey.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Pita-Calvo C, Guerra-Rodríguez ME, Vázquez M (2017) Analytical methods used in the quality control of honey. J Agric Food Chem 65:690–703. https://doi.org/10.1021/acs.jafc.6b04776

    Article  CAS  PubMed  Google Scholar 

  2. Cavia MM, Fernández-Muio MA, Gömez-Alonso E, Montes-Pérez MJ, Huidobro JF, Sancho MT (2002) Evolution of fructose and glucose in honey over one year: influence of induced granulation. Food Chem 78:157–161. https://doi.org/10.1016/S0308-8146(01)00393-4

    Article  CAS  Google Scholar 

  3. Da Silva PM, Gauche C, Gonzaga LV, Costa ACO (2016) Honey: chemical composition, stability and authenticity. Food Chem 196:309–323. https://doi.org/10.1016/j.foodchem.2015.09.051

    Article  CAS  PubMed  Google Scholar 

  4. Escuredo O, Seijo MC, Salvador J, González-Martín MI (2013) Near infrared spectroscopy for prediction of antioxidant compounds in the honey. Food Chem 141:3409–3414. https://doi.org/10.1016/j.foodchem.2013.06.066

    Article  CAS  PubMed  Google Scholar 

  5. Latorre CH, Crecente RMP, Martín SG, García JB (2013) A fast chemometric procedure based on NIR data for authentication of honey with protected geographical indication. Food Chem 141:3559–3565. https://doi.org/10.1016/j.foodchem.2013.06.022

    Article  CAS  Google Scholar 

  6. Li S, Zhang X, Shan Y, Su D, Ma Q, Wen R, Li J (2017) Qualitative and quantitative detection of honey adulterated with high-fructose corn syrup and maltose syrup by using near-infrared spectroscopy. Food Chem 218:231–236. https://doi.org/10.1016/j.foodchem.2016.08.105

    Article  CAS  PubMed  Google Scholar 

  7. Ruoff K, Luginbühl W, Bogdanov S, Bosset JO, Estermann B, Ziolko T, Kheradmandan S, Amadò R (2007) Quantitative determination of physical and chemical measurands in honey by near-infrared spectrometry. Eur Food Res Technol 225:415–423. https://doi.org/10.1007/s00217-006-0432-8

    Article  CAS  Google Scholar 

  8. Frausto-Reyes C, Casillas-Peñuelas R, Quintanar-Stephano JL et al (2017) Spectroscopic study of honey from Apis mellifera from different regions in Mexico. Spectrochim Acta Part A Mol Biomol Spectrosc 178:212–217. https://doi.org/10.1016/j.saa.2017.02.009

    Article  CAS  Google Scholar 

  9. Bázár G, Romvári R, Szabó A, Somogyi T, Éles V, Tsenkova R (2016) NIR detection of honey adulteration reveals differences in water spectral pattern. Food Chem 194:873–880. https://doi.org/10.1016/j.foodchem.2015.08.092

    Article  CAS  PubMed  Google Scholar 

  10. Bakier S (2009) Capabilities of near-infrared spectroscopy to analyse changes in water bonding during honey crystallisation process. Int J Food Sci Technol 44:519–524. https://doi.org/10.1111/j.1365-2621.2008.01837.x

    Article  CAS  Google Scholar 

  11. Escuredo O, Dobre I, Fernández-González M, Seijo MC (2014) Contribution of botanical origin and sugar composition of honeys on the crystallization phenomenon. Food Chem 149:84–90. https://doi.org/10.1016/j.foodchem.2013.10.097

    Article  CAS  PubMed  Google Scholar 

  12. Ribeiro GP, Villas-Bôas JK, Spinosa WA, Prudencio SH (2018) Influence of freezing, pasteurization and maturation on Tiúba honey quality. LWT Food Sci Technol 90:607–612. https://doi.org/10.1016/j.lwt.2017.12.072

    Article  CAS  Google Scholar 

  13. Zhao H, Cheng N, Zhang Y, Sun Z, Wang Y, Cao W (2018) The effects of different thermal treatments on amino acid contents and chemometric-based identification of overheated honey. LWT 96:133–139. https://doi.org/10.1016/j.lwt.2018.05.004

    Article  CAS  Google Scholar 

  14. Chen G, Huang Y, Chen K (2014) Research article recent advances and applications of near infrared spectroscopy for honey quality assessment. Adv J Food Sci Technol 6:461–467. https://doi.org/10.19026/ajfst.6.55

    Article  Google Scholar 

  15. Bisutti V, Merlanti R, Serva L, Lucatello L, Mirisola M, Balzan S, Tenti S, Fontana F, Trevisan G, Montanucci L, Contiero B, Segato S, Capolongo F (2019) Multivariate and machine learning approaches for honey botanical origin authentication using near infrared spectroscopy. J Near Infrared Spectrosc 27(1):65–74. https://doi.org/10.1177/0967033518824765 (096703351882476)

    Article  Google Scholar 

  16. Il Ministero delle Politiche Agricole e Forestali (2003) D.M. 25 luglio 2003 Metodi di analisi per la valutazione delle caratteristiche di composizione del miele. Gazz Uff della Repubb Ital 185:24–54

    Google Scholar 

  17. Bogdanov S (2009) Harmonised methods of the international IHC. Bee Prod Sci. https://doi.org/10.1007/s13398-014-0173-7.2

    Article  Google Scholar 

  18. Grané A, Jach A (2014) Application of principal component analysis (PCA) in food science and technology. Wiley, Chichester

    Google Scholar 

  19. Serva L, Balzan S, Bisutti V, Montemurro F, Marchesini G, Bastianello E, Segato S, Novelli E, Fasolato L (2019) Use of near infrared spectroscopy and chemometrics to evaluate the shelf-life of cloudy sonicated apple juice. J Near Infrared Spectrosc 27:75–85. https://doi.org/10.1177/0967033518821833 (096703351882183)

    Article  Google Scholar 

  20. Kursa MB, Rudnicki WR (2010) Feature selection with the Boruta package. J Stat Softw 36:1–13. https://doi.org/10.18637/jss.v036.i11

    Article  Google Scholar 

  21. Guelpa A, Marini F, du Plessis A, Slabbert R, Manley M (2017) Verification of authenticity and fraud detection in South African honey using NIR spectroscopy. Food Control 73:1388–1396. https://doi.org/10.1016/j.foodcont.2016.11.002

    Article  CAS  Google Scholar 

  22. Cano CB, Felsner ML, Matos JR, Bruns RE, Whatanabe HM, Almeida-Muradian LB (2001) Comparison of methods for determining moisture content of citrus and eucalyptus Brazilian honeys by refractometry. J Food Compos Anal 14:101–109. https://doi.org/10.1006/jfca.2000.0951

    Article  CAS  Google Scholar 

  23. Hamdan K (2010) Crystallization of honey. Bee World 87:71–74. https://doi.org/10.1080/0005772X.2010.11417371

    Article  Google Scholar 

  24. Singh I, Singh S (2018) Honey moisture reduction and its quality. J Food Sci Technol. https://doi.org/10.1007/s13197-018-3341-5

    Article  PubMed  PubMed Central  Google Scholar 

  25. Andersen CM, Bro R (2010) Variable selection in regression-a tutorial. J Chemom 24:728–737. https://doi.org/10.1002/cem.1360

    Article  CAS  Google Scholar 

  26. Leardi R (2000) Application of genetic algorithm–PLS for feature selection in spectral data sets. J Chemom 14:643–655. https://doi.org/10.1002/1099-128X(200009/12)14

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the FONDAZIONE CARIVERONA (Project SAFIL, call 2016) and Padova University (Project CPDA 158894/15-PRAT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Severino Segato.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest exist in the submission of this manuscript.

Compliance with ethics requirements

This article does not contain any studies with human or animal subjects.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Segato, S., Merlanti, R., Bisutti, V. et al. Multivariate and machine learning models to assess the heat effects on honey physicochemical, colour and NIR data. Eur Food Res Technol 245, 2269–2278 (2019). https://doi.org/10.1007/s00217-019-03332-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-019-03332-x

Keywords

Navigation