Skip to main content
Log in

Lupinus angustifolius L. lactofermentation and protein isolation: effects on phenolic compounds and genistein, antioxidant properties, trypsin inhibitor activity, and protein digestibility

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

In some European countries, lupin seeds are not used efficiently enough, due to a lack of processing technologies for the preparation of attractive higher-value products; fermentation could be a promising process to increase the value of lupin seeds and their protein isolates. In this study, the influence of a range of factors—seeds of Lupinus angustifolius L. hybrid line (HL) Nos. 1700, 1701, 1800, and 1072, solid state and submerged fermentation methods (FMs) with different Pediococcus pentosaceus strains (05–8, 05–9, and 05–10), and the use of a protein isolation (PI) process—on the total content of phenolic compounds (TPC) and isoflavones, antioxidant properties, trypsin inhibitor activity (TIA), and protein digestibility (PD) of lupin wholemeal and protein isolates was evaluated. In addition, changes in the SDS-PAGE profiles of fermented lupin protein isolates were analysed. The selected Pediococcus strains were found to be suitable starters for the fermentation of lupin seeds. The protein content in isolates ranged from 80.43 to 89.08% on a dry weight basis and was significantly influenced by FM (p = 0.0001). The most common protein fractions in isolates ranged in molecular weight from 15 to 167 kDa. The PD of lupin wholemeal samples was on average 3.13% higher than that of protein isolates. The genistein content of lupin samples showed a significant correlation with PI and HL (p = 0.002 and p = 0.0001, respectively), and a lower genistein content was observed in lupin protein isolates. Fermentation can provide a basis for the development of higher-value products, but the technological parameters should be selected by taking into account that some technological steps (PI) can reduce the amount of genistein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gresta F, De Luca AI, Strano A, Falcone G, Santonoceto C, Anastasi U, Gulisano G (2014) Ital J Agron 9:20–24

    Article  Google Scholar 

  2. Belski R, Jeyakumar H (2012) Adv Food Nutr Res 66:147

    Article  CAS  PubMed  Google Scholar 

  3. Lucas MM, Stoddard FL, Annicchiarico P, Frias J, Martinez-Villaluenga C, Sussmann D, Pueyo JJ (2015) Front Plant Sci 6:705

    PubMed  PubMed Central  Google Scholar 

  4. Czubinski J, Montowska M, Pospiech E, Lampart-Szczapa E (2017) J Sci Food Agric 97:1–8

    Article  CAS  Google Scholar 

  5. Melini F, Melini V, Luziatelli F, Ruzzi M (2017) Compr Rev Food Sci Food Saf 16:1101–1122

    Article  CAS  Google Scholar 

  6. Bähr M, Fechner A, Kiehntopf M, Jahreis G (2015) Clin Nutr 34:7–14

    Article  CAS  PubMed  Google Scholar 

  7. Arnoldi A, Zanoni C, Lammi C, Boschin G (2015) Crit Rev Plant Sci 34:144–168

    Article  CAS  Google Scholar 

  8. Rietjens IMCM., Louisse J, Beekmann (2017) Br J Pharmacol 174:1263–1280

    Article  CAS  PubMed  Google Scholar 

  9. Gupta A, Tiwari SK (2014) Probiotics Antimicrob Proteins 6:73–81

    Article  CAS  PubMed  Google Scholar 

  10. Hur SJ, Lee SY, Kim YC, Choi I, Kim GB (2014) Food Chem 160:346–356

    Article  CAS  PubMed  Google Scholar 

  11. Dordevic TM, Šiler-Marinkovic SS, Dimitrijevic-Brankovic SI (2010) Food Chem 119:957–963

    Article  CAS  Google Scholar 

  12. Nagino T, Mitsuyoshi KA, Masuoka N, Chiaki KA, Michitoshi AN, Miyazaki K, Kamachi K, Isozak M, Suzuki C, Kasuga C, Tanaka A (2016) Biosci Microb Food Health 35:9–17

    Article  CAS  Google Scholar 

  13. Jackson CJ, Dini JP, Lavandier C, Rupasinghe HP, Faulkner H, Poysa V, Buzzell D, DeGrandis S (2002) Process Biochem 37:1117–1123

    Article  CAS  Google Scholar 

  14. Bartkiene E, Bartkevics V, Starkute V, Krungleviciute V, Cizeikiene D, Zadeike D, Juodeikiene G (2016) Zemdirb Agric 103:107–114

    Article  Google Scholar 

  15. Bartkiene E, Bartkevics V, Rusko J, Starkute V, Zadeike D, Juodeikiene G (2016) Int J Food Sci Technol 51:2049–2056

    Article  CAS  Google Scholar 

  16. ISO 15214:1998 (1998) Horizontal method for the enumeration of mesophilic lactic acid bacteria. Colony-count technique at 30 °C. International standards. Microbiology of food and animal feeding stuffs. International Organization for Standardization, Ginebra

    Google Scholar 

  17. Muranyi IS, Volke D, Hoffmann R, Eisner P, Herfellner T, Brunnbauer M, Schweiggert-Weisz U (2016) Food Chem 207:6–15

    Article  CAS  PubMed  Google Scholar 

  18. King J, Aguirre C, De Pablo S (1985) J Food Sci 50:82–87

    Article  CAS  Google Scholar 

  19. AOAC International (1990) Method 968.06. Official methods of analysis of the Association of Official Analytical Chemists. Gaithersburg, MD, USA

  20. ICC 105/2:1994 (1995) Determination of crude protein in cereals and cereal products for food and for feed. Ed. International Association for Cereal Science and Technology, Vienna

    Google Scholar 

  21. Lqari H, Vioque J, Pedroche J, Millán F (2002) Food Chem 76:349–356

    Article  CAS  Google Scholar 

  22. Vaher M, Matso K, Levandi T, Helmja K, Kaljurand M (2010) Procedia Chem 2:76–82

    Article  CAS  Google Scholar 

  23. Zhu KX, Lian CX, Guo XN, Peng W, Zhou HM (2011) Food Chem 126:1122–1126

    Article  CAS  Google Scholar 

  24. Gobbetti M, De Angelis M, Corsetti A, Di Cagno R (2005) Trends Food Sci Technol 16:57–69

    Article  CAS  Google Scholar 

  25. Fritsch C, Vogel RF, Toelstede S (2015) J Appl Microbiol 119:1075–1088

    Article  CAS  PubMed  Google Scholar 

  26. Kumar BV, Vijayendra SVN, Reddy OVS (2015) J Food Sci Technol 52:6112–6124

    Article  CAS  Google Scholar 

  27. Jiang J, Chen J, Xiong YL (2009) J Agric Food Chem 57:7576–7583

    Article  CAS  PubMed  Google Scholar 

  28. Schoustra SE, Kasase C, Toarta C, Kassen R, Poulain AJ (2013) PLoS One 8:639–648

    Article  CAS  Google Scholar 

  29. Tyl C, Sadler GD (2017) pH and Titratable Acidity. In: Nielsen S (ed) Food Analysis. Springer, Cham, pp 389–406

  30. Feyzi S, Varidi M, Zare F, Varidi MJ (2015) J Sci Food Agric 95:3165–3176

    Article  CAS  PubMed  Google Scholar 

  31. Ballabio C, Peñas E, Uberti F, Fiocchi A, Duranti M, Magni C, Restani P (2013) Pediatr Allergy Immunol 24:270–275

    Article  PubMed  Google Scholar 

  32. Del Rio D, Rodriguez-Mateos A, Spencer JP, Tognolini M, Borges G, Crozier A (2013) Antioxid Redox Signal 18:1818–1892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Othman NB, Roblain D, Chammen N, Thonart P, Hamdi M (2009) Food Chem 116:662–669

    Article  CAS  Google Scholar 

  34. Gan RY, Shah NP, Wang MF, Lui WY, Corke H (2016) Int J Food Sci Technol 51:875–884

    Article  CAS  Google Scholar 

  35. Gujral HS, Sharma P, Bajaj R, Solah V (2012) J Food Sci Technol 18:47–54

    Article  CAS  Google Scholar 

  36. Sindhu SC, Khetarpaul N (2001) J Food Compos Anal 14:601–609

    Article  CAS  Google Scholar 

  37. Gilani GS, Xiao CW, Cockell KA (2012) Br J Nutr 108:315–332

    Article  CAS  Google Scholar 

  38. Wati RK, Theppakorn T, Benjakul S, Rawdkuen S (2010) J Food Sci 75:C223–C228

    Article  CAS  PubMed  Google Scholar 

  39. Wink M (2013) South Afr J Bot 89:164–175

    Article  CAS  Google Scholar 

  40. Grela ER, Kiczorowska B, Samolińska W, Matras J, Kiczorowski P, Rybiński W, Hanczakowska E (2017) Eur Food Res Technol 243:1385–1395

    Article  CAS  Google Scholar 

  41. Kobayashi H (2013) Front Biosci (Elite Ed) 5:966–973

    Article  Google Scholar 

  42. Dallas D, Sanctuary MR, Qu Y, Khajavi SH, Van Zandt AE, Dyandra M, Frese SA, Barile D, German JB (2017) Crit Rev Food Sci Nutr 57:3313–3331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Feng J, Liu X, Xu Z, Lu Y, Liu Y (2007) Anim Feed Sci Technol 134:295–303

    Article  CAS  Google Scholar 

  44. Zhang ZL, Zhou ML, Tang Y, Li FL, Tang YX, Shao JR, Wu YM (2012) Food Res Int 49:389–395

    Article  CAS  Google Scholar 

  45. Oomah BD, Tiger N, Olson M, Balasubramanian P (2006) Plant Foods Hum Nutr 61:91–97

    Article  CAS  PubMed  Google Scholar 

  46. Kim SH, Choi KC (2014) J Nutr Biochem 28:70–82

    Article  CAS  Google Scholar 

  47. Antosiak A, Milowska K, Maczynska K, Rozalska S, Gabryelak T (2017) Med Chem Res 26:64–73

    Article  CAS  PubMed  Google Scholar 

  48. Danciu C, Oana S, Antal DS, Ardelean F, Chis AR, Soica C, Andrica F, Dehelean C, Brigitha V (2017) New Insights Regarding the Potential Health Benefits of Isoflavones. In: Badria FA (ed) Natural products and cancer drug discovery. InTech. ISBN 978-953-51-3314-8, Print ISBN 978-953-51-3313-1

  49. Liu ZM, Ho SC, Chen YM, Ho S, To K, Tomlinson B, Woo J (2014) Mol Nutr Food Res 58:709–717

    Article  CAS  PubMed  Google Scholar 

  50. Pakalapati G, Li L, Gretz N, Koch E, Wink M (2009) Phytomedicine 16:845–855

    Article  CAS  PubMed  Google Scholar 

  51. Wang HJ, Murphy PA (1996) J Agric Food Chem 44:2377–2383

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Part of this research was funded by the Baltic-German University Liaison Office project, which is supported by the German Academic Exchange Service (DAAD) with funds from the Foreign Office of the Federal Republic of Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Bartkiene.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bartkiene, E., Sakiene, V., Bartkevics, V. et al. Lupinus angustifolius L. lactofermentation and protein isolation: effects on phenolic compounds and genistein, antioxidant properties, trypsin inhibitor activity, and protein digestibility. Eur Food Res Technol 244, 1521–1531 (2018). https://doi.org/10.1007/s00217-018-3066-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-018-3066-8

Keywords

Navigation