Skip to main content
Log in

Overexpression of different alcohol acetyltransferase genes with BAT2 deletion in Saccharomyces cerevisiae affects acetate esters and higher alcohols

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Acetate esters and higher alcohols significantly determine the flavor profiles of Chinese Baijiu (Chinese liquor). The aminotransferase encoded by BAT2 and alcohol acetyltransferases encoded by ATF1, ATF2, and Lg-ATF1 are involved in the production of branched-chain alcohols and synthesis of acetate esters, respectively. In this study, the effects of ATF1, ATF2, and Lg-ATF1 overexpressions with BAT2 deletion were explored in Chinese Baijiu yeast. The differences among these effects were also investigated. Results showed that the productions of acetate esters by mutant overexpressing ATF1 with BAT2 deletion and that overexpressing ATF2 with BAT2 deletion were 1353.45 and 73.40 mg/L, respectively, which were 43.16- and 2.34-fold higher than that by the original strain. Compared with mutant overexpressing ATF2 with BAT2 deletion, mutant overexpressing ATF1 with BAT2 deletion exhibited 48.17% decreased higher alcohol productivity. The production of higher alcohols in mutant overexpressing ATF2 with BAT2 deletion was similar to that in the BAT2 deletion mutant. Furthermore, no significant difference was observed between the BAT2 deletion mutant and the mutant overexpressing Lg-ATF1 with BAT2 deletion in terms of acetate ester and higher alcohol production. The mutants that have varying capacities for acetate ester and higher alcohol production can be potentially developed and applied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Fan W, Qian MC (2006) Characterization of aroma compounds of Chinese “Wuliangye” and “Jiannanchun” liquors by aroma extract dilution analysis. J Agric Food Chem 54(7):2695–2704. doi:10.1021/jf052635t

    Article  CAS  Google Scholar 

  2. Ding X, Wu C, Huang J, Zhou R (2015) Changes in volatile compounds of Chinese Luzhou-flavor liquor during the fermentation and distillation process. J Food Sci 80(11):C2373–C2381. doi:10.1111/1750-3841.13072

    Article  CAS  Google Scholar 

  3. Xiao Z, Yu D, Niu Y, Chen F, Song SQ, Zhu JC, Zhu GY (2014) Characterization of aroma compounds of Chinese famous liquors by gas chromatography–mass spectrometry and flash GC electronic-nose. J Chromatogr B s945–946(2):92–100. doi:10.1016/j.jchromb.2013.11.032

    Article  Google Scholar 

  4. Swiegers JH, Pretorius IS (2005) Yeast modulation of wine flavor. Adv Appl Microbiol 57:131–175. doi:10.1016/S0065-2164(05)57005-9

    Article  CAS  Google Scholar 

  5. Yang D, Luo X, Wang X (2014) Characteristics of traditional Chinese shanlan wine fermentation. J Biosci Bioeng 117(2):203–207. doi:10.1016/j.jbiosc.2013.07.010

    Article  CAS  Google Scholar 

  6. Lilly M, Bauer FF, Lambrechts MG, Swiegers JH, Cozzolino D, Pretorius IS (2006) The effect of increased yeast alcohol acetyltransferase and esterase activity on the flavour profiles of wine and distillates. Yeast 23(9):641–659. doi:10.1002/yea.1382

    Article  CAS  Google Scholar 

  7. Wu Q, Yu K, Yan X (2015) Flavor profile of Chinese liquor is altered by interactions of intrinsic and extrinsic microbes. Appl Environ Microbiol 82(2):422–430. doi:10.1128/AEM.02518-15

    Article  Google Scholar 

  8. Fan W, Qian MC (2005) Headspace solid phase microextraction and gas chromatography–olfactometry dilution analysis of young and aged Chinese “Yanghe Daqu” liquors. J Agric Food Chem 53(20):7931–7938. doi:10.1021/jf051011k

    Article  CAS  Google Scholar 

  9. Wu XH, Zheng XW, Han BZ, Vervoort J, Nout MJ (2009) Characterization of Chinese liquor starter, “Daqu”, by flavor type with 1H NMR-based nontargeted analysis. J Agric Food Chem 57(23):11354–11359. doi:10.1021/jf902881p

    Article  CAS  Google Scholar 

  10. Zhang C, Ao Z, Chui W, Shen C, Tao W, Zhang S (2012) Characterization of the aroma-active compounds in Daqu: a tradition Chinese liquor starter. Eur Food Res Technol 234(1):69–76. doi:10.1007/s00217-011-1616-4

    Article  CAS  Google Scholar 

  11. Nordström K (1962) Formation of ethyl acetate in fermentation with brewer’s yeast III. Participation of coenzyme A. J Inst Brew 68:398–407. doi:10.1002/j.2050-0416.1962.tb01882.x

    Article  Google Scholar 

  12. Nagasawa N, Bogaki T, Iwamatsu A, Hamachi M, Kumagai C (1998) Cloning and nucleotide sequence of the alcohol acetyltransferase II gene (ATF2) from Saccharomyces cerevisiae Kyokai No. 7. Biosci Biotechnol Biochem 62(10):1852–1857. doi:10.1271/bbb.62.1852

    Article  CAS  Google Scholar 

  13. Yoshimoto H, Fujiwara D, Momma T, Ito C, Sone H, Kaneko Y, Tamai Y (1998) Characterization of the ATF1 and Lg-ATF1 genes encoding alcohol acetyltransferases in the bottom fermenting yeast Saccharomyces pastorianus. J Ferment Bioeng 86(1):15–20. doi:10.1016/S0922-338X(98)80027-5

    Article  CAS  Google Scholar 

  14. Verstrepen KJ, Laere SDMV, Vanderhaegen BMP, Derdelinckx G, Dufour JP, Pretorius IS, Winderickx J, Thevelein JM, Delvaux FR (2003) Expression levels of the yeast alcohol acetyltransferase genes ATF1, Lg-ATF1, and ATF2 control the formation of a broad range of volatile esters. Appl Environ Microbiol 69(9):5228–5237. doi:10.1128/AEM.69.9.5228-5237.2003

    Article  CAS  Google Scholar 

  15. Molina AM, Swiegers JH, Varela C, Pretorius IS, Agosin E (2007) Influence of wine fermentation temperature on the synthesis of yeast-derived volatile aroma compounds. Appl Microbiol Biotechnol 77(3):675–687. doi:10.1007/s00253-007-1194-3

    Article  CAS  Google Scholar 

  16. Dekoninck TML, Verbelen PJ, Delvaux F, Mulders SEV, Delvaux FR (2012) The importance of wort composition for yeast metabolism during accelerated brewery fermentations. J Am Soc Brew Chem 70(3):195–204. doi:10.1016/j.cervis.2013.09.026

    CAS  Google Scholar 

  17. Procopio S, Qian F, Becker T (2011) Function and regulation of yeast genes involved in higher alcohol and ester metabolism during beverage fermentation. Eur Food Res Technol 233(5):721–729. doi:10.1007/s00217-011-1567-9

    Article  CAS  Google Scholar 

  18. Fujii T, Yoshimoto H, Tamai Y (1996) Acetate ester production by Saccharomyces cerevisiae lacking the ATF1 gene encoding the alcohol acetyltransferase. J Ferment Bioeng 81(6):538–542. doi:10.1016/0922-338X(96)81476-0

    Article  CAS  Google Scholar 

  19. Lilly M, Lambrechts MG, Pretorius IS (2000) Effect of increased yeast alcohol acetyltransferase activity on flavor profiles of wine and distillates. Appl Environ Microbiol 66(2):744–753. doi:10.1128/AEM.66.2.744-753.2000

    Article  CAS  Google Scholar 

  20. Hirosawa I, Aritomi K, Hoshida H, Kashiwagi S, Nishizawa Y, Akada R (2004) Construction of a self-cloning sake yeast that overexpresses alcohol acetyltransferase gene by a two-step gene replacement protocol. Appl Microbiol Biotechnol 65(1):68–73. doi:10.1007/s00253-004-1563-0

    Article  CAS  Google Scholar 

  21. Zhang JW, Zhang CY, Dai LH, Dong J, Liu YL, Guo XW, Xiao DG (2012) Effects of overexpression of the alcohol acetyltransferase-encoding gene ATF1 and disruption of the esterase-encoding gene IAH1 on the flavour profiles of Chinese yellow rice wine. Int J Food Sci Technol 47(12):2590–2596. doi:10.1111/j.1365-2621.2012.03140.x

    Article  CAS  Google Scholar 

  22. Zhang CY, Liu YL, Qi YN, Zhang JW, Dai LH, Lin X, Xiao DG (2013) Increased esters and decreased higher alcohols production by engineered brewer’s yeast strains. Eur Food Res Technol 236(6):1009–1014. doi:10.1007/s00217-013-1966-1

    Article  CAS  Google Scholar 

  23. Zhang J, Zhang C, Qi Y, Dai L, Ma H, Guo X, Xiao D (2014) Acetate ester production by Chinese yellow rice wine yeast overexpressing the alcohol acetyltransferase-encoding gene ATF2. Genet Mol Res 13(4):9735–9746. doi:10.4238/2014.November.27.1

    Article  CAS  Google Scholar 

  24. Zhang J, Zhang C, Wang J, Dai L, Xiao D (2014) Expression of the gene Lg-ATF1 encoding alcohol acetyltransferases from brewery lager yeast in Chinese rice wine yeast. Lect Notes Electr Eng 249:43–51. doi:10.1007/978-3-642-37916-1-5

    Article  Google Scholar 

  25. Li W, Wang JH, Zhang CY, Ma HX, Xiao DG (2017) Regulation of Saccharomyces cerevisiae genetic engineering on the production of acetate esters and higher alcohols during Chinese Baijiu fermentation. J Ind Microbiol Biotechnol. doi:10.1007/s10295-017-1907-2

    Google Scholar 

  26. Dickinson JR, Norte V (1993) A study of branched-chain amino acid aminotransferase and isolation of mutations affecting the catabolism of branched-chain amino acids in Saccharomyces cerevisiae. FEBS Lett 326(1–3):29–32. doi:10.1016/0014-5793(93)81754-N

    Article  CAS  Google Scholar 

  27. Derrick S, Large PJ (1993) Activities of the enzymes of the Ehrlich pathway and formation of branched-chain alcohols in Saccharomyces cerevisiae and Candida utilis grown in continuous culture on valine or ammonium as sole nitrogen source. J Gen Microbiol 139(11):2783–2792. doi:10.1099/00221287-139-11-2783

    Article  CAS  Google Scholar 

  28. Eden A, Nedervelde LV, Drukker M, Benvenisty N, Debourg A (2001) Involvement of branched-chain amino acid aminotransferases in the production of fusel alcohols during fermentation in yeast. Appl Microbiol Biotechnol 55(3):296–300. doi:10.1007/s002530000506

    Article  CAS  Google Scholar 

  29. Dickinson JR, Salgado LEJ, Hewlins MJE (2003) The catabolism of amino acids to long chain and complex alcohols in Saccharomyces cerevisiae. J Biol Chem 278:8028–8034. doi:10.1074/jbc.M211914200

    Article  CAS  Google Scholar 

  30. Lilly M, Bauer FF, Styger G, Lambrechts MG, Pretorius IS (2006) The effect of increased branched-chain amino acid transaminase activity in yeast on the production of higher alcohols and on the flavour profiles of wine and distillates. FEMS Yeast Res 6(5):726–743. doi:10.1111/j.1567-1364.2006.00057.x

    Article  CAS  Google Scholar 

  31. Zhang CY, Qi YN, Ma HX, Li W, Dai LH, Xiao DG (2015) Decreased production of higher alcohols by Saccharomyces cerevisiae for Chinese rice wine fermentation by deletion of bat aminotransferases. J Ind Microbiol Biotechnol 42(4):617–625. doi:10.1007/s10295-015-1583-z

    Article  CAS  Google Scholar 

  32. Gietz RD, Woods RA (2002) Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods Enzymol 350:87–96. doi:10.1016/S0076-6879(02)50957-5

    Article  CAS  Google Scholar 

  33. Gueldener U, Heinisch J, Koehler GJ, Voss D, Hegemann JH (2002) A second set of loxP marker cassettes for Cre-mediated multiple gene knockouts in budding yeast. Nucleic Acids Res 30(6):e23

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2016YFD0400505), the National Natural Science Foundation of China (31471724), the Major Project of Research Program on Applied Fundamentals and Advanced Technologies of Tianjin (14JCZDJC32900), and the National High Technology Research and Development Program of China (2013AA102108).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cui-Ying Zhang or Dong-Guang Xiao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Compliance with ethics requirements

This article does not contain any studies with human or animal subjects.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Cui, DY., Wang, JH. et al. Overexpression of different alcohol acetyltransferase genes with BAT2 deletion in Saccharomyces cerevisiae affects acetate esters and higher alcohols. Eur Food Res Technol 244, 555–564 (2018). https://doi.org/10.1007/s00217-017-2977-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-017-2977-0

Keywords

Navigation