Skip to main content

Advertisement

Log in

Phenolic composition of orange peels and modulation of redox status and matrix metalloproteinase activities in primary (Caco-2) and metastatic (LoVo and LoVo/ADR) colon cancer cells

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Orange (Citrus sinensis) peels, consumed in the diet as wines, candies or as infusions, are rich sources of phenolic compounds. This study sought to investigate the protective ability of phenolic extracts from orange peels against oxidative stress in primary human colonic tumor (Caco-2) and metastatic cell lines (LoVo and LoVo/ADR). The effects of the extracts on glutathione reductase, glutathione peroxidase and total matrix metalloproteinase (MMP) activities in the cells were also investigated. The results revealed that the extracts displayed cellular antioxidant activities and increased the activities of glutathione reductase and glutathione peroxidase in the cells. Furthermore, the extracts inhibited total MMP activities in the cells in a dose-dependent manner. HPLC fingerprinting revealed the presence of flavonoids and hydroxycinnamic acid. This study showed that orange peels phenolic extracts exhibited cellular antioxidant activity and inhibited MMP activity in colon cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Labat-Robert J, Robert L (2014) Longevity and aging. Role of free radicals and xanthine oxidase. A review. Pathol Biol 62:61–66 (Paris)

    Article  CAS  Google Scholar 

  2. Li S, Chen G, Zhang C, Wu M, Wu S, Liu Q (2014) Research progress of natural antioxidants in foods for the treatment of diseases. Food Sci Hum Wellness 3:110–116

    Article  Google Scholar 

  3. Barrera G (2012) Oxidative stress and lipid peroxidation products in cancer progression and therapy. ISRN Oncol. doi:10.5402/2012/137289

    Google Scholar 

  4. Hendrickse CW, Kelly R, Radley S, Donovan IA, Keighley MR, Neoptolemod JP (1994) Lipid peroxidation and prostaglandins in colorectal cancer. Br J Surg 81:1219–1223

    Article  CAS  Google Scholar 

  5. Guz J, Foksinski M, Siomek A, Gackowski D, Rozalski R, Dziaman T, Szpila A, Olinski R (2008) The relationship between 8-oxo-7,8-dihydro-2′-deoxyguanosine level and extent of cytosine methylation in leukocytes DNA of healthy subjects and in patients with colon adenomas and carcinomas. Mutat Res 640(1–2):170–173

    Article  CAS  Google Scholar 

  6. Perse M (2013) Oxidative stress in the pathogenesis of colorectal cancer: Cause or consequence? BioMed Res Int. doi:10.1155/2013/725710

    Google Scholar 

  7. Mena S, Ortega A, Estrela JM (2009) Oxidative stress in environmental-induced carcinogenesis. Mutat Res 674(1–2):36–44

    Article  CAS  Google Scholar 

  8. Tramer F, Moze S, Ademosun AO, Passamonti S, Cvorovic J (2012) Dietary anthocyanins: impact on colorectal cancer and mechanisms of action. In: Ettarh R (ed) Colorectal cancer—from prevention to patient care. InTech Publishers, Rijeka, pp 123–156

  9. Zucker S, Cao J, Chen W (2000) Critical appraisal of the use of matrix metalloproteinase inhibitors in cancer treatment. Oncogene 19:6642–6650

    Article  CAS  Google Scholar 

  10. Fang J, Shing Y, Wiederschain D, Yan L, Butterfeld C, Jackson G, Harper J, Tamvakopoulos G, Moses MA (2000) Matrix metalloproteinase-2 is required for the switch to the angiogenic phenotype in a tumor model. Proc Nat Acad Sci 97:3884–3889

    Article  CAS  Google Scholar 

  11. Dai J, Mumper RJ (2012) Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules 15:7313–7352

    Article  Google Scholar 

  12. Oboh G, Ademosun AO (2012) Characterization of the antioxidant properties of phenolic extracts from some citrus peels. J Food Sci Technol 49:729–736

    Article  CAS  Google Scholar 

  13. Sun J, Chu YF, Wu X, Liu RH (2002) Antioxidant and antiproliferation activities of common fruit. J Agric Food Chem 50:7449–7454

    Article  CAS  Google Scholar 

  14. Saura-Calixto F (2012) Concept and health related properties of non-extractable polyphenols: the missing dietary polyphenols. J Agric Food Chem 60:11195–11200

    Article  CAS  Google Scholar 

  15. Padayachee A, Netzel G, Netzel M, Day L, Mikkelsen D, Gidley MJ (2013) Lack of release of bound anthocyanins and phenolic acids from carrot plant cell walls and model composites during simulated gastric and small intestinal digestion. Food Func 4:906–916

    Article  CAS  Google Scholar 

  16. Ross KA (2014) Concepts important in understanding the health benefits of phenolics in fruits and vegetables: extractable and non-extractable phenolics and the influence of cell wall polysaccharides on bioaccessibility and bioavailability. Res Health Nutr 2:29–43

    Google Scholar 

  17. Chu Y, Sun J, Wu X, Liu RH (2002) Antioxidant and antiproliferative activity of common vegetables. J Agric Food Chem 50:6910–6916

    Article  CAS  Google Scholar 

  18. Oboh G, Rocha JBT (2007) Antioxidant in foods: a new challenge for food processors. In: Panglossi HV (ed) Leading edge antioxidants research. Nova Science Publishers Inc., New York, pp 35–64

    Google Scholar 

  19. Wolfe KL, Liu RH (2007) Cellular antioxidant activity (CAA) assay for assessing antioxidants food and dietary supplements. J Agric Food Chem 55:8896–8907

    Article  CAS  Google Scholar 

  20. Ademosun AO, Oboh G, Passamonti S, Tramer F, Ziberna L, Boligon AA, Athayde ML (2015) Phenolics from grapefruit peels inhibit HMG-CoA reductase and angiotensin-I converting enzyme and show antioxidative properties in endothelial EA.Hy 926 cells. Food Sci Hum Wellness 4:80–85

    Article  Google Scholar 

  21. Cvorovic J, Tramer F, Granzotto M, Candussio L, Decorti G, Passamonti S (2010) Oxidative stress-based cytotoxicity of delphinidin and cyanidin in colon cancer cells. Arch Biochem Biophy 501:151–157

    Article  CAS  Google Scholar 

  22. Rahman I, Kode A, Biswas SK (2006) Assay for quantitative determination of glutathione and glutathione disulfide levels using enzymatic recycling method. Nat Protoc 1(6):3159–3165

    Article  CAS  Google Scholar 

  23. Knight CG, Willenbrock F, Murphy G (1992) A novel coumarin-labelled peptide for sensitive continuous assays of the matrix metalloproteinases. FEBS Lett 296:263–296

    Article  CAS  Google Scholar 

  24. Freitas M, Baldeiras I, Proença T, Alves V, Mota-Pinto A, Sarmento-Ribeiro A (2013) Oxidative stress adaptation in aggressive prostate cancer may be counteracted by the reduction of glutathione reductase. FEBS Open Bio 2:119–128

    Article  Google Scholar 

  25. Boligon AA, Sagrillo MR, Machado LF, Filho OS, Machado MM, da Cruz IBM, Athayde ML (2012) Protective effects of extracts and flavonoids isolated from Scutia buxifolia Reissek against chromosome damage in human lymphocytes exposed to hydrogen peroxide. Molecules 17:5757–5769

    Article  CAS  Google Scholar 

  26. Zar JH (1984) Biostatistical analysis. Prentice-Hall Inc., Englewood Cliffs 620

    Google Scholar 

  27. Pravda J (2005) Radical induction theory of ulcerative colitis. World J Gastroenterol 11(16):2371–2384

    Article  CAS  Google Scholar 

  28. Rezaie A, Parker RD, Abdollahi M (2007) Oxidative stress and pathogenesis of inflammatory bowel disease an epiphenomenon or the cause. Dig Dis Sci 52:21

    Article  Google Scholar 

  29. Bourne L, Rice-Evans C (1998) Bioavailablity of ferulic acid. Biochem Biophy Res Commun 253:222–227

    Article  CAS  Google Scholar 

  30. Fanciulli M, Bruno T, Giovannelli A, Gentile FP, Di Padova M, Rubiu O, Floridi A (2000) Energy metabolism of human LoVo colon carcinoma cells: correlation to drug resistance and influence of lonidamine. Clin Cancer Res 6:1590–1597

    CAS  Google Scholar 

  31. Ríos-Arrabal S, Artacho-Cordón F, León J, Román-Marinetto E, Salinas-Asensio M, Calvente I et al (2013) Involvement of free radicals in breast cancer. SpringerPlus 2:404

    Article  Google Scholar 

  32. Lopez-Lazaro M (2007) Dual role of hydrogen peroxide in cancer: possible relevance to cancer chemoprevention and therapy. Cancer Lett 252:1–8

    Article  CAS  Google Scholar 

  33. Wiegand H, Christine BS, Ionela R, Dieter T, Siegfried W, Gerald R (2009) Effects of quercetin and catechin on hepatic glutathione-S transferase (GST), NAD(P)H quinone oxidoreductase 1 (NQO1), and antioxidant enzyme activity levels in rats. Nutr Cancer 61(5):717–722

    Article  CAS  Google Scholar 

  34. Nagata H, Takekoshi S, Takagi T, Honma T, Watanabe K (1999) Antioxidative action of flavonoids, quercetin and catechin, mediated by the activation of glutathione peroxidase. Tokai J Exp Clin Med 24:1–11

    CAS  Google Scholar 

  35. Bors W, Heller W, Michel C, Saran M (1990) Flavonoids as antioxidants: determination of radical-scavenging efficiencies. Method Enzymol 186:343–355

    Article  CAS  Google Scholar 

  36. Takahama U (1986) Spectrophotometric study on the oxidation of rutin by horseradish peroxidase and characteristics of the oxidized products. Biochim Biophys Acta 882:445–451

    Article  CAS  Google Scholar 

  37. Takahama U, Egashira T (1991) Peroxidase in vacuoles of Vicia faba leaves. Phytochemistry 30:73–77

    Article  CAS  Google Scholar 

  38. Gorrini C, Harris IS, Mak TW (2013) Modulation of oxidative stress as an anticancer strategy. Nat Rev Drug Disc 12(12):931–947

    Article  CAS  Google Scholar 

  39. Nabeshima K, Inoue T, Shimao Y, Sameshima T (2002) Matrix metalloproteinases in tumor invasion: role for cell migration. Pathol Int 52:255–264

    Article  CAS  Google Scholar 

  40. Ademosun AO, Oboh G, Passamonti S, Tramer F, Ziberna L, Boligon AA, Athayde ML (2015) Inhibition of metalloproteinase and proteasome activities in colon cancer cells by citrus peel extracts. J Basic Clin Physiol Pharmacol 26(5):471–477

    Article  CAS  Google Scholar 

  41. Baker AH, Edwards DR, Murphy G (2002) Metalloproteinase inhibitors: biological actions and therapeutic opportunities. J Cell Sci 115:3719–3727

    Article  CAS  Google Scholar 

  42. Deryugina EI, Quigley JP (2006) Matrix metalloproteinases and tumor metastasis. Cancer Metastasis Rev 25:9–34

    Article  CAS  Google Scholar 

  43. Panyathep A, Chewonarin T, Taneyhill K, Vinitketkumnuen U (2013) Antioxidant and anti-matrix metalloproteinases activities of dried longan (Euphoria longana) seed extract. Sci Asia 39:12–18

    Article  CAS  Google Scholar 

  44. Somerville RP, Oblander SA, Apte SS (2013) Matrix metalloproteinases: old dogs with new tricks. Genome Bio 4:216

    Article  Google Scholar 

  45. Amic D, Davidovic-Amic D, Beslo D, Trinajstic N (2003) Structure-related scavenging activity relationship of flavonoids. Croat Chem Acta 76:55–61

    CAS  Google Scholar 

  46. Omoba OS, Obafaye RO, Salawu SO, Boligon AA, Athayde ML (2015) HPLC–DAD phenolic characterization and antioxidant activities of ripe and unripe sweet orange peels. Antioxidants 4:498–512

    Article  CAS  Google Scholar 

  47. Su D, Zhang R, Hou F, Zhang M, Guo J, Huang F, Deng Y, Wei Z (2014) Comparison of the free and bound phenolic profiles and cellular antioxidant activities of litchi pulp extracts from different solvents. BMC Complement Altern Med 14:9–18

    Article  Google Scholar 

  48. Kajdzanoska M, Petreska J, Stefova M (2011) Comparison of different extraction solvent mixtures for characterization of phenolic compounds in strawberries. J Agric Food Chem 59:5272–5278

    Article  CAS  Google Scholar 

  49. Alia M, Horcajo C, Bravo L, Goya L (2003) Effect of grape antioxidant dietary fiber on the total antioxidant capacity and the activity of liver antioxidant enzymes in rats. Nutr Res 23:1251–1267

    Article  CAS  Google Scholar 

  50. Materska M, Perucka I (2005) Antioxidant activity of the main phenolic compounds Isolated from hot pepper fruit (Capsicum annuum L.). J Agric Food Chem 53:1750–1756

    Article  CAS  Google Scholar 

  51. Nam JS, Sharma AR, Nguyen LT, Chakraborty C, Sharma G, Lee SS (2016) Application of bioactive quercetin in oncotherapy: from nutrition to nanomedicine. Molecules 21:108–130

    Article  Google Scholar 

  52. Lin CW, Hou WC, Shen SC, Juan SH, Ko CH, Wang LM, Chen YC (2008) Quercetin inhibition of tumor invasion via suppressing PKC δ/ERK/AP-1-dependent matrix metalloproteinase-9 activation in breast carcinoma cells. Carcinogenesis 29:1807–1815

    Article  CAS  Google Scholar 

  53. Aroui S, Najlaoui F, Chtourou Y, Meunier A, Laajimi A, Kenani A, Fetoui H (2015) Naringin inhibits the invasion and migration of human glioblastoma cell via downregulation of MMP-2 and MMP-9 expression and inactivation of p38 signaling pathway. Tumor Biol. doi:10.1007/s13277-015-4230-4

    Google Scholar 

  54. Gibellini L, Pinti M, Nasi M, Biasi SD, Roat E, Betoncelli L, Cossarizza A (2010) Interfering with ROS metabolism in cancer cells: the potential role of quercetin. Cancers 2:1288–1311

    Article  CAS  Google Scholar 

  55. Williamson G, Clifford MN (2010) Colonic metabolites of berry polyphenols: The missing link to biological activity? Br J Nutr 104(Suppl 3):S48–S66

    Article  CAS  Google Scholar 

  56. Serra A, Macia A, Romero M, Reguant J, Ortega N, Motilva M (2012) Metabolic pathways of the colonic metabolism of flavonoids (flavonols, flavones and flavanones) and phenolic acids. Food Chem 130:383–393

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Ayokunle Ademosun’s stay in Italy was funded by Education Trust Fund (ETF) of the Federal Government of Nigeria/Federal University of Technology, Akure and Training and Research in Italian Laboratory (TRIL) Programme of The Abdus Salam International Centre for Theoretical Physics, Trieste, Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ganiyu Oboh.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Compliance with ethics requirements

This article does not contain any studies with human or animal subjects.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ademosun, A.O., Oboh, G., Passamonti, S. et al. Phenolic composition of orange peels and modulation of redox status and matrix metalloproteinase activities in primary (Caco-2) and metastatic (LoVo and LoVo/ADR) colon cancer cells. Eur Food Res Technol 242, 1949–1959 (2016). https://doi.org/10.1007/s00217-016-2694-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-016-2694-0

Keywords

Navigation