Skip to main content
Log in

Determination of the geographical origin of processed spice using multielement and isotopic pattern on the example of Szegedi paprika

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

This case study presents a fast and reliable method of combining strontium isotope ratios (87Sr/86Sr) with a multielement pattern (Rb, Sr, Y, Zr, Mo, Cd, Ba, Pb, Th, U, Mg, Ca, Sc, Ti, Cr, Mn, Fe, Co, Ni, Cu, Zn, As and rare earth elements) by means of inductively coupled plasma mass spectrometry (ICP-MS) to establish a unique fingerprint of authentic Szegedi Fűszerpaprika (PDO) and classify authentic and purchased paprika from different known, declared and unknown geographical origin using multivariate statistical tools (principal component and canonical discriminant analysis). Since paprika represents a processed spice, alterations in element and Sr isotopic composition throughout the production process were investigated. The Sr source in the final product was identified to stem from bioavailable Sr sources in soil. Therefore, the ammonium nitrate extract of a soil is sufficient to establish a Sr fingerprint for agricultural products of a region. As a consequence, the spice paprika can be traced back to its geographical origin even after processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. European Council Regulation No. 510/2006 (2006) Official Journal of the European Union, European Commission, Brussels

  2. Capo RC, Stewart BW (1998) Geoderma 82:197–225

    Article  CAS  Google Scholar 

  3. Bentley RA (2006) J Archeol Method Theory 13:135–187

    Article  Google Scholar 

  4. Aberg G (1995) Water Soil Air Pollut 79:309–322

    Article  Google Scholar 

  5. Pett-Ridge JC, Derry LA, Kurtz AC (2009) Geochim Cosmochim Acta 73:25–43

    Article  CAS  Google Scholar 

  6. Almeida CM, Vasconcelos MT (2001) J Anal At Spectrom 16:607–611

    Article  CAS  Google Scholar 

  7. Almeida CM, Vasconcelos MT (2004) Food Chem 85:7–12

    Article  CAS  Google Scholar 

  8. Ehrlich S, Gavrieli I, Dor LB, Halicz L (2001) J Anal At Spectrom 16:1389–1395

    Article  CAS  Google Scholar 

  9. Barbaste M, Robinson K, Guilfoyle S, Medina B, Lobinski R (2002) J Anal At Spectrom 17:135–137

    Article  CAS  Google Scholar 

  10. Fortunato G, Mumic K, Wunderli S, Pillonel L, Bosset JO, Gremaud G (2004) J Anal At Spectrom 19:227–234

    Article  CAS  Google Scholar 

  11. Brach-Papa C, Van Bocxstaele M, Ponzevera E, Quétel CR (2009) Spectrochim Acta Part B: At Spectrosc 64:229–234

    Article  Google Scholar 

  12. Swoboda S, Brunner M, Boulyga S, Galler P, Horacek M, Prohaska T (2008) Anal Bioanal Chem 390:487–494

    Article  CAS  Google Scholar 

  13. García-Ruiz S, Moldovan M, Fortunato G, Wunderli S, García Alonso JI (2007) Anal Chim Acta 590:55–66

    Article  Google Scholar 

  14. Rodushkin I, Bergman T, Douglas D, Engström E, Sörlin D, Baxter DC (2007) Anal Chim Acta 583:310–318

    Article  CAS  Google Scholar 

  15. Voerkelius S, Lorenz GD, Rummel S, Quétel CR, Heiss G, Baxter M, Brach-Papa C, Deters-Itzelsberger P, Hoelzl S, Hoogewerff J, Ponzevera E, Van Bocxstaele M, Ueckermann H (2009) Food Chem 118:933–940

    Article  Google Scholar 

  16. Montgomery J, Evans JA, Wildman G (2006) Appl Geochem 21:1626–1634

    Article  CAS  Google Scholar 

  17. Crittenden RG, Andrew AS, LeFournour M, Young MD, Middleton H, Stockmann R (2007) Int Dairy J 17:421–428

    Article  CAS  Google Scholar 

  18. Rummel S, Hoelzl S, Horn P, Rossmann A, Schlicht C (2010) Food Chem 118:890–900

    Article  CAS  Google Scholar 

  19. Cao X, Chen Y, Gu Z, Wang X (2000) Int J Environ Anal Chem 76:295–309

    Article  CAS  Google Scholar 

  20. Liang T, Zhang S, Wang L, Kung HT, Wang Y, Hu A, Ding S (2005) Environ Geochem Health 27:301–311

    Article  CAS  Google Scholar 

  21. Markert B, Zhang DL (1991) Sci Total Environ 103:27–35

    Article  CAS  Google Scholar 

  22. Benincasa C, Lewis J, Sindona G, Tagarelli A (2008) Food Chem 110:257–262

    Article  CAS  Google Scholar 

  23. Martino FA, Sánchez MF, Sanz-Medel A (2001) Anal Chim Acta 442:191–200

    Article  CAS  Google Scholar 

  24. Benincasa C, Lewis J, Perri E, Sindona G, Tagarelli A (2007) Anal Chim Acta 585:366–370

    Article  CAS  Google Scholar 

  25. Galgano F, Favati F, Caruso M, Scarpa T, Palma A (2008) LWT-Food Sci Technol 41:1808–1815

    Article  CAS  Google Scholar 

  26. González A, Llorens A, Cervera ML, Armenta S, De la Guardia M (2009) Food Chem 112:26–34

    Article  Google Scholar 

  27. Kment P, Mihaljevic M, Ettler V, Sebek O, Strnad L, Rohlová L (2005) Food Chem 91:157–165

    Article  CAS  Google Scholar 

  28. Serapinas P, Venskutonis PR, Aninkevicius V, Ezerinskis Z, Galdikas A, Juzikiene V (2008) Food Chem 107:1652–1660

    CAS  Google Scholar 

  29. Taylor VF, Longerich HP, Greenough JD (2003) J Agric Food Chem 51:856–860

    Article  CAS  Google Scholar 

  30. Baxter MJ, Crews HM, Dennis MJ, Goodall I, Anderson D (1997) Food Chem 60:443–450

    Article  CAS  Google Scholar 

  31. Castineira MdM, Feldmann I, Jakubowski N, Andersson JT (2004) J Agric Food Chem 52:2962–2974

    Article  Google Scholar 

  32. Oddone M, Aceto M, Baldizzone M, Musso D, Osella D (2009) J Agric Food Chem 57:3404–3408

    Article  CAS  Google Scholar 

  33. Costas-Rodríguez M, Lavilla I, Bendicho C Analytica Chimica Acta Corrected Proof (in press)

  34. Branch S, Burke S, Evans P, Fairman B, Briche CS (2003) J Anal At Spectrom 18:17–22

    Article  CAS  Google Scholar 

  35. Camin F, Larcher R, Perini M, Bontempo L, Bertoldi D, Gagliano G, Nicolini G, Versini G (2010) Food Chem 118:901–909

    Article  CAS  Google Scholar 

  36. Franke BM, Hadorn R, Bosset JO, Gremaud G, Kreuzer M (2008) Meat Sci 80:944–947

    Article  CAS  Google Scholar 

  37. Heaton K, Kelly SD, Hoogewerff J, Woolfe M (2008) Food Chem 107:506–515

    Article  CAS  Google Scholar 

  38. Kelly S, Baxter M, Chapman S, Rhodes C, Dennis J, Brereton P (2002) Eur Food Res Technol 214:72–78

    Article  CAS  Google Scholar 

  39. Perez AL, Smith BW, Anderson KA (2006) J Agric Food Chem 54:4506–4516

    Article  CAS  Google Scholar 

  40. Rodushkin I, Ödman F, Appelbad PK (1999) J Food Compost Anal 12:243–257

    Article  CAS  Google Scholar 

  41. Almeida CM, Vasconcelos MT (2003) J Agric Food Chem 51:4788–4798

    Article  CAS  Google Scholar 

  42. Augagneur S, Médina B, Szpunar J, Lobinski R (1996) J Anal At Spectrosc 11:713–721

    Article  CAS  Google Scholar 

  43. Jakubowski N, Brandt R, Stuewer D, Eschnauer HR, Görtges S (1999) Fresenius’ J Anal Chem 364:424–428

    Article  CAS  Google Scholar 

  44. Barbaste M, Médina B, Sarabia L, Ortiz MC, Pérez-Trujillo JP (2002) Anal Chim Acta 472:161–174

    Article  CAS  Google Scholar 

  45. Ladrón de Guevera RG, González M, García-Meseguer MJ, Nieto JM, Amo M, Varón R (2002) J Sci Food Agri 82:1061–1069

    Article  Google Scholar 

  46. DIN V 19730 (1997) Bodenbeschaffenheit-Extraktion von Spurenelementen mit Ammoniumnitratlösung, Beuth, Berlin

  47. ISO (1993) Guide to expression of uncertainty in measurement (‘GUM’), ISO Geneva

  48. EURACHEM (1995) Quantifying uncertainty in analytical measurement. LGC, Teddington

    Google Scholar 

  49. Thomsen V, Schatzlein D, Mercuro D (2003) Spectroscopy 18:112–114

    CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the scientific support of FWF 267N11, the BOKUDoc grant, the Austrian-Hungarian Research Fund (72öu2), the Hungarian Research Fund (OTKA F61087) and the Bolyai János Research Fellowship. We would like to thank László Abrankó from the Corvinus University of Budapest, Karin Dauda, Matthias Zeilinger, Ylva Rodhe, Giacomo Di Noto and Pipsa Salolammi for providing sample material.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Prohaska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brunner, M., Katona, R., Stefánka, Z. et al. Determination of the geographical origin of processed spice using multielement and isotopic pattern on the example of Szegedi paprika. Eur Food Res Technol 231, 623–634 (2010). https://doi.org/10.1007/s00217-010-1314-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-010-1314-7

Keywords

Navigation