Skip to main content

Advertisement

Log in

Inhibition of adhesion of Streptococcus mutans to hydroxylapatite by commercial dairy powders and individual milk proteins

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

The aim of this study was to investigate the inhibitory effect of various dairy powders and milk constituents on the adhesion of a clinical isolate of Streptococcus mutans to hydroxylapatite (HA), an analogue of tooth enamel. Adhesion of a microorganism to a cell surface such as epithelial cells or tooth enamel is considered to be the first step in pathogenesis. Inhibiting this process may have therapeutic effects in vivo. The adherence assays were performed by incubating S. mutans with HA in the presence of each test material for 45 min, followed by centrifugal separation of the HA. Unbound bacteria were then quantified using a fluorescent dye. Sweet and Acid WPC80, buttermilk powder and cream powder were found to very effectively inhibit adherence of S. mutans to phosphate-buffered saline coated HA (PBS-HA). Sodium caseinate and the casein fractions α-,β- and κ-casein were also found to show high levels of anti-adhesive activity. A selection of test materials were assessed using saliva-coated HA (S-HA), and similar trends were observed. The results suggest commercial dairy powders, and certain milk proteins, can inhibit adhesion of S. mutans to HA and may have potential to control dental caries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Loesche W (1986) Microbiol Rev 50:353–380

    CAS  Google Scholar 

  2. Aas J, Paster B, Stokes L, Olsen I, Dewhirst F (2005) J Clin Microbiol 43:5721–5723

    Article  Google Scholar 

  3. Marcotte H, Lavoie M (1998) Microbiol Mol Biol Rev 62(1):71–109

    CAS  Google Scholar 

  4. Tarsi R, Muzzarelli R, Guzman C, Pruzzo C (1997) J Dent Res 76:665–672

    CAS  Google Scholar 

  5. Clark W, Gibbons R (1977) Infect Immun 18:514–523

    CAS  Google Scholar 

  6. Scannapieco F, Torres G, Levine M (1995) J Dent Res 74:1360–1366

    Article  CAS  Google Scholar 

  7. Gaines S, James T, Folan M, Baird A, O’Farrelly C (2003) J Microbiol Meth 54:315–323

    Article  CAS  Google Scholar 

  8. Schipper R, Silletti E, Vingerhoeds M (2007) Arch Oral Biol 52:1114–1135

    Article  CAS  Google Scholar 

  9. An Y, Friedman R (1997) J Microbiol Meth 30:141–152

    Article  CAS  Google Scholar 

  10. Warner E, Kanekanian A, Andrews A (2001) Int J Dairy Technol 54(4):151–153

    Article  CAS  Google Scholar 

  11. Brady D, Folan M (2005) Patent Number US2005042299

  12. IDF (1964) IDF standard 27. International Dairy Federation, Brussels

    Google Scholar 

  13. IDF (1987) Standard 9C. International Dairy Federation, Brussels

    Google Scholar 

  14. IDF (1993) Standard 20B. International Dairy Federation, Brussels

    Google Scholar 

  15. IDF (1993) Standard 26A. International Dairy Federation, Brussels

    Google Scholar 

  16. Gibbons R, Etherden I (1982) Infect Immun 36(1):52–58

    CAS  Google Scholar 

  17. Neeser J (1987) European patent application EP 283, 675

  18. Schupbach P, Neeser J, Golliard M, Rouvet M, Guggenheim B (1996) J Dent Res 75:1779–1788

    CAS  Google Scholar 

  19. Wong P, Nakamura S, Kitts D (2006) Food Chem 97:310–317

    Article  CAS  Google Scholar 

  20. Neeser J (1991) US Patent 4994441

  21. Reynolds E, del Rio A (1984) Arch Oral Biol 29:927–933

    Article  CAS  Google Scholar 

  22. Reynolds E (1987) J Dent Res 66(6):1120–1127

    CAS  Google Scholar 

  23. Liljemark W, Schauer S, Bloomquist C (1978) J Dent Res 57(2):373–379

    CAS  Google Scholar 

  24. Clark W, Bammann L, Gibbons R (1978) Infect Immun 19(3):846–853

    CAS  Google Scholar 

  25. Oho T, Mitoma M, Koga T (2002) Infect Immun 70:5279–5282

    Article  CAS  Google Scholar 

  26. Vacca-Smith A, Van Wuyckhuyse B, Tabak L, Bowen W (1994) Arch Oral Biol 39:1063–1069

    Article  CAS  Google Scholar 

  27. Limsong J, Benjavongkulchai E, Kuvatanasuchati J (2004) J Ethnopharmacol 92:281–289

    Article  Google Scholar 

  28. Yamanaka A, Kimizuka R, Kato T, Okuda K (2004) Oral Microbiol Immunol 19:150–154

    Article  CAS  Google Scholar 

  29. Luo Q, Andrade J (1998) J Colloid Interf Sci 200:104–113

    Article  CAS  Google Scholar 

  30. Gibbons R, Hay D (1989) J Dent Res 68:1303–1307

    CAS  Google Scholar 

  31. Johansson I (2002) Scand J Food Nutr 46(3):119–122

    Google Scholar 

Download references

Acknowledgments

This work was supported by the national development plan (NDP), with a grant from the food institutional research measure (FIRM). We would like to thank Una Scallan and Joshua Arimi (UCD) for their help with statistical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. B. Brady.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Halpin, R.M., O’Connor, M.M., McMahon, A. et al. Inhibition of adhesion of Streptococcus mutans to hydroxylapatite by commercial dairy powders and individual milk proteins. Eur Food Res Technol 227, 1499–1506 (2008). https://doi.org/10.1007/s00217-008-0872-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-008-0872-4

Keywords

Navigation