Skip to main content
Log in

Changes in structure and aroma release from starch–aroma systems upon α-amylase addition

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

The influence of starch hydrolysis by α-amylase addition on structural properties and aroma release from starch–aroma systems was studied. A food model system composed of aqueous tapioca starch dispersion (4 g dry starch/100 g dispersion) and one aroma compound (menthone) was investigated. Structure breakdown and related changes in starch fraction (amylose) were measured by rheology and iodine-binding. Menthone release from the aroma-starch system in the headspace was followed by proton transfer reaction-mass spectrometry (PTR-MS) upon starch hydrolysis. A slightly higher viscosity was found for the starch–menthone system compared to the starch system without menthone upon α-amylase addition. One could hypothesise that menthone acts as a kind of nucleation agent for inducing structure build-up of starch segments, hindering starch degradation. An extensive aroma release from aroma–starch systems upon α-amylase addition was expected, but, instead, just a slight volatile increase was found after a starch hydrolysis time of 60 min. It is suggested that aroma release is the result of several superimposed effects ranging from viscosity effects to interactions between aroma compounds and starch degradation products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Conde-Petit B (2001) Structural features of starch in food: A polymeric and colloidal approach. Habilitation Thesis, Swiss Federal Institute of Technology (ETH) Zurich, Zurich

  2. Sayaslan A (2006) Int J Food Properties 9:463–473

    Article  CAS  Google Scholar 

  3. Mandin O, Duckham SC, Ames JM (1999) J Agric Food Chem 47:2355–2359

    Article  CAS  Google Scholar 

  4. Sayaslan A, Chung OK, Seib PA, Seitz LM (2000) Cereal Chem 77:248–253

    Article  CAS  Google Scholar 

  5. Goubet I, Le Quere JL, Voilley AJ (1998) J Agric Food Chem 46:1981–1990

    Article  CAS  Google Scholar 

  6. Boutboul A, Giampaoli P, Feigenbaum A, Ducruet V (2002) Carbohydr Polym 47:73–82

    Article  CAS  Google Scholar 

  7. Le Bail P, Rondeau C, Buleon A (2005) Int J Biol Macromol 35:1–7

    Article  CAS  Google Scholar 

  8. Biliaderis CG, Page CM, Slade L, Sirett RR (1985) Carbohydr Polym 5:367–389

    Article  CAS  Google Scholar 

  9. Rutschmann MA, Heiniger J, Pliska V, Solms J (1989) Lebensm Wiss Technol 22:240–244

    CAS  Google Scholar 

  10. Heinemann C, Zinsli M, Renggli A, Escher F, Conde-Petit W (2005) LWT Food Sci Technol 38:885–894

    Article  CAS  Google Scholar 

  11. Conde-Petit B, Escher F (1995) J Rheol 39:1497–1518

    Article  CAS  Google Scholar 

  12. Jouquand C, Ducruet V, Le Bail P (2006) Food Chem 96:461–470

    Article  CAS  Google Scholar 

  13. Voilley A, Simatos D, Loncin M (1977) Lebensm Wiss Technol 10:45–49

    CAS  Google Scholar 

  14. Seneviratne HD, Biliaderis CG (1991) J Cereal Sci 13:129–143

    Article  CAS  Google Scholar 

  15. Van Ruth SM, Roozen JP (2000) Food Chem 71:339–345

    Article  Google Scholar 

  16. Boland AB, Buhr K, Giannouli P, van Ruth SM (2004) Food Chem 86:401–411

    Article  CAS  Google Scholar 

  17. Friel EN, Taylor AJ (2001) J Agric Food Chem 49:3898–3905

    Article  CAS  Google Scholar 

  18. Marin M, Baek I, Taylor AJ (1999) J Agric Food Chem 47:4750–4755

    Article  CAS  Google Scholar 

  19. Lindinger W, Hansel A, Jordan A (1998) Int J Mass Spectrom 173:191–241

    Article  CAS  Google Scholar 

  20. Hollo J (1956) Angewandte Chemie-International Edition 68:592

    Article  Google Scholar 

  21. Buettner A, Otto S, Beer A, Mestres M, Schieberle P, Hummel T (2008) Food Chem 108:1234–1246

    Article  CAS  Google Scholar 

  22. Hansel A, Jordan A, Holzinger R, Prazeller P, Vogel W, Lindinger W (1995) Int J Mass Spectrom 150:609–619

    Article  Google Scholar 

  23. Lindinger C, Pollien P, Ali S, Blank I, Märk T (2005) Direct inter-comparison of datasets obtained by different PTR-MS: a novel approach to optimize and adapt the fragmentation pattern using a standardization procedure. In: Hansel A, Märk T (eds )Proceedings of the 2nd international conference on proton transfer reaction mass spectrometry and its application, Innsbruck, Austria, 2005. Innsbruck University, Innsbruck, pp 89–95

  24. Tietz M, Buettner A, Conde-Petit B (2008) Food Chem 108:1192–1199

    Article  CAS  Google Scholar 

  25. Ferry AL, Hort J, Mitchell JR, Lagarrigue S, Pamies B (2004) J Texture Stud 35:511–524

    Google Scholar 

  26. Evans ID, Haisman DR, Elson EL, Pasternak C, McConnaughey WB (1986) J Sci Food Agric 37:573–590

    Article  CAS  Google Scholar 

  27. Banks W, Greenwood CT (1975) Starch and its components. University Press, Edinburgh

    Google Scholar 

  28. Savary G, Sémon E, Meunier JM, Doublier JL, Cayot N (2007) J Agric Food Chem 55:7099–7106

    Article  CAS  Google Scholar 

  29. Okeefe SF, Wilson LA, Resurreccion AP, Murphy PA (1991) J Agric Food Chem 39:1022–1028

    Article  CAS  Google Scholar 

  30. Weel KGC, Boelrijk AE, Burger JJ, Gruppen H, Voragen AGJ, Smit G (2003) Abstr Pap Am Chem Soc 226:088-AGFD

    Google Scholar 

Download references

Acknowledgments

The PTR measurements were carried out at Deutsche Forschungsanstalt für Lebensmittelchemie (D-Garching) and we wish to thank Prof. P. Schieberle for his support of our scientific work. We also thank Dr. Katja Buhr (TU Garching), Dr. Jeannette Nuessli and Prof. Felix Escher (both ETH Zurich) for their fruitful discussions. This study was financially supported by the Swiss Secretariat for Education and Research, by the COST Action 921 (STSM grant for Melanie Tietz), the Deutsche Forschungsanstalt für Lebensmittelchemie and the HWP II-program for excellent junior researchers (Andrea Buettner).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Conde-Petit.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tietz, M., Buettner, A. & Conde-Petit, B. Changes in structure and aroma release from starch–aroma systems upon α-amylase addition. Eur Food Res Technol 227, 1439–1446 (2008). https://doi.org/10.1007/s00217-008-0864-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-008-0864-4

Keywords

Navigation