Skip to main content
Log in

Atomic force microscopy of the water-soluble pectin of peaches during storage

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Yellow peaches (Prunus persicu L. Batsch.) were stored under a controlled atmosphere of 2% O2 + 10% CO2, or a normal atmosphere at 2 °C, in order to investigate the effects of storage conditions, atmosphere and time on the structure of a single water-soluble pectin (WSP) molecule. The microstructural changes of the branches and widths of WSP were studied by atomic force microscopy (AFM) on the 1st, 15th and 45th days under the assigned atmosphere. The probability of small-width WSP increased with time in both groups, but the probability was larger in the normal-atmosphere group. The microstructure of WSP molecules and polymers showed that the aggregate separation increased with storage time. The degradation of WSP molecules was inhibited by controlled-atmosphere storage. The majority of the chains were composed of four basic units with widths of 11.719, 15.625, 19.531 and 35.156 nm, which could be visualized and calculated exactly by AFM. These results indicate that parallel linkages or intertwists between the basic units are fundamental conformations for WSP molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Limberg G, Körner R, Buchholt HC, Christensen TM, Roepstorff P, Mikkelsen JD (2000) Carbohyd Res 327:293–307

    Article  CAS  Google Scholar 

  2. Golovchenko VV, Ovodova RG, Shashkov AS, Ovodov YS (2002) Phytochem 60:89–97

    Article  CAS  Google Scholar 

  3. Limberg G, Körner R, Buchholt HC, Christensen TM, Roepstorff P, Mikkelsen JD (2000) Carbohyd Res 327:321–332

    Article  CAS  Google Scholar 

  4. Vetter S, Kunzek H (2003) Eur Food Res Technol 217:392–400

    Article  CAS  Google Scholar 

  5. Ridley BL, O’Neill MA, Mohnen D (2001) Phytochem 57:929–967

    Article  CAS  PubMed  Google Scholar 

  6. Round AN, MacDougall AJ, Ring SG, Morris VJ (1997) Carbohyd Res 303:251–253

    Article  Google Scholar 

  7. Round AN, Rigby NM, MacDougall AJ, Ring SG, Morris VJ (2001) Carbohyd Res 331:337–342

    Article  CAS  Google Scholar 

  8. Decho AW (1999) Carbohyd Res 315:330–333

    Article  CAS  Google Scholar 

  9. Morris VJ, Mackie AR, Wilde PJ, Kirby AR, Mills EC, Gunning P (2001) Lebensm Wiss Technol 34:3–10

    Article  CAS  Google Scholar 

  10. Gunning AP, Cairns P, Kirby AR, Round AN, Bixler HJ, Morris VJ (1998) Carbohyd Polym 36:67–72

    Article  CAS  Google Scholar 

  11. Kunzek H, Kabbert R, Gloyna DZ (1999) Lebensm Unters F A 208:233–250

    Article  CAS  Google Scholar 

  12. Fahlén J, Salmén LJ (2003) Mater Sci 38:119–126

    Article  Google Scholar 

  13. Artés F, Escalona VH, Artés-Hdez F (2002) Eur Food Res Technol 214:216–220

    Article  CAS  Google Scholar 

  14. Villarreal-Alba EG, Contreras-Esquivel JC, Aguilar-González CN, Reyes-Vega ML (2004) Eur Food Res Technol 218:164–166

    Article  CAS  Google Scholar 

  15. Tijskens LM, Rodis PS, Herbog ML, Kalantzi U, Dijk C (1998) J Food Eng 35:111–126

    Article  Google Scholar 

  16. Zhou HW, Sonego L, Khalchitski A, Ben-Arie R, Lers A, Lurie S (2000) J Am Soc Hortic Sci 125:630–637

    CAS  Google Scholar 

  17. Balnois E, Wilkinson KJ (2002) Colloid Surface A 207:229–242

    Article  CAS  Google Scholar 

  18. Darrort V, Troyon M, Ebothé J, Bissieux C, Nicollin C (1995) Thin Solid Films 265:52–57

    Article  CAS  Google Scholar 

  19. Reed J, Singer E, Kresbach G, Schwartz DC (1998) Anal Biochem 259:80–88

    Article  CAS  PubMed  Google Scholar 

  20. Wada H, Usekura H, Sugawara M, Katori Y, Kakehata S, Ikeda K, Kobayashi T (2003) Hearing Res 177:61–70

    Article  Google Scholar 

  21. Adams EL, Kroon PA, Williamson G, Morris VJ (2003) Carbohyd Res 338:71–780

    Google Scholar 

  22. Morris VJ, Gunning AP, Kirby AR, Round A, Waldron RK, Ng A (1997) Int J Biol Macromol 21:61–66

    Article  CAS  PubMed  Google Scholar 

  23. Herbert C, O’Connell R, Gaulin E, Salesses V, Esquerré-Tugayé MT, Dumas B (2004) Fungal Genet Biol 41:140–147

    Article  CAS  PubMed  Google Scholar 

  24. Massiot P, Perron V, Baron A, Drilleau JF (1997) Lebensm Wiss Technol 30:697–702

    Google Scholar 

  25. Needs PW, Rigby NM, Ring SG, MacDougall AJ (2001) Carbohyd Res 333:47–58

    Article  CAS  Google Scholar 

  26. Morris GA, Hromádková Z, Ebringerová A, Malovíková A, Alföldi J, Harding SE (2002) Carbohyd Polym 48:351–359

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by grants from the National Economy and Commence Committee (project no. 02CJ-12-07-03). The first two authors contributed equally to this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunfei Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, H., An, H., Feng, G. et al. Atomic force microscopy of the water-soluble pectin of peaches during storage. Eur Food Res Technol 220, 587–591 (2005). https://doi.org/10.1007/s00217-004-1102-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-004-1102-3

Keywords

Navigation