Skip to main content
Log in

Tissue distribution of metabolites in Cordyceps cicadae determined by DESI-MSI analysis

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In this paper, we establish an in situ visualization analysis method to image the spatial distribution of metabolites in different parts (sclerotium, coremium) and different microregions of Cordyceps cicadae (C. cicadae) to achieve the in situ visual characterization of tissues for a variety of metabolites such as nucleosides, amino acids, polysaccharides, organic acids, fatty acids, and so on. The study included LC–MS chemical composition identification, preparation of C. cicadae tissue sections, DEDI-MSI analysis, DESI combined with Q-TOF/MS to obtain high-resolution imaging of mass-to-charge ratio and space, imaging of C. cicadae in positive–negative ion mode with a spatial resolution of 100 μm, and localizing and identifying its chemical compositions based on its precise mass. A total of 62 compounds were identified; nucleosides were mainly distributed in the coremium, L-threonine and DL-isoleucine, and other essential amino acids; peptides were mainly distributed in the sclerotium of C. cicadae; and the rest of the amino acids did not have a clear pattern; sugars and sugar alcohols were mainly distributed in the coremium of C. cicadae; organic acids and fatty acids were distributed in the nucleus of C. cicadae more than in the sclerotium, and the mass spectrometry imaging method is established in the research. The mass spectrometry imaging method established in this study is simple and fast and can visualize and analyse the spatial distribution of metabolites of C. cicadae, which is of great significance in characterizing the metabolic network of C. cicadae, and provides support for the quality evaluation of C. cicadae and the study of the temporal and spatial metabolic network of chemical compounds.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Lei X. Theory of the artillery of Lei Gong (anonymous text). Shanghai: Shanghai College of Traditional Chinese Medicine Press; 1986.

    Google Scholar 

  2. Administration CFaD. Processing specification of traditional Chinese medicine decoction pieces in Chongqing. Chongqing: Chongqing Food and Drug Administration; 2006:34.

  3. Administration SFaD. The standard for traditional Chinese medicines in Sichuan Province. Chengdu: Sichuan Science and Technology Press; 2010:659.

  4. Feng Y, Gong X, Wei D, Liu Y, Zhao M, Yu X, et al. Antioxidant activity and preliminary structure analysis of polysaccharides from Cordyceps cicadas. Food Science. 2016;37(13):19–24.

    Google Scholar 

  5. Hualin W, Jing Z, Wai-Hung S, Jetty LC-Y, Man-Fan WJ. Cordyceps cicadae induces G2/M cell cycle arrest in MHCC97H human hepatocellular carcinoma cells: a proteomic study. Chin Med. 2014;9(1). https://doi.org/10.1186/1749-8546-9-15.

  6. Song J, Wang H, Luo J, Dan K, Li Y, Han A, et al. Effect of Cordyceps cicadae polysaccharides on immunologic function of mice. Journal of Nuclear Agricultural Sciences. 2018;32(10):1977–83.

    Google Scholar 

  7. Wen P, Chen S, Zheng B, Liang H, Wang T, Bai L, et al. Protective effect and mechanism of polysaccharides from Cordyceps cicadae on acute liver injury induced by D-GlaN in mice. Chin J Exp Tradit Med Formulae. 2018;24(06):108–13.

    Google Scholar 

  8. Yang J, Jin L, Lv J, Yuan Q, Jin J. The experimental study of paecilomyces cicadicae polysaccharides on anti-aging. Chin J Gerontol. 2004;04:343–4.

    Google Scholar 

  9. Ge Q, Wan J, Zhu Y, Wang Y, He X, Wei Y, et al. Qualitative and quantitative analysis of nucleoside components in Cordyceps cicadae by LC-MS and HPLC. Natural Product Research and Development. 2019;31(11):1857–63+927 [in Chinese].

    Google Scholar 

  10. Li L, Liang H, Wu Z, Zhang Z, Zhang L, Wang Y, et al. HPLC fingerprint of Cordyceps cicadae from different parts by cluster analysis and principal component analysis. Lishizhen Medicine and Materia Medica Research. 2017;28(07):1537–41.

    Google Scholar 

  11. He Y, Peng F, Zhao C, Fu B, Huang B, Hu F. Metabolomic differences among different parts of Isaria cicadae cultured on Antheraea pernyi. Microbiology China. 2021;48(02):480–92.

    Google Scholar 

  12. Sun C, Liu W, Guo L, Wang X. Analysis of the tissue distribution of metabolites in lotus seeds based on MALDI mass spectrometry imaging. Journal of Instrumental Analysis. 2021;40(01):86–91.

    CAS  Google Scholar 

  13. Ren Z, Zhang H, Yang L, Chen X, Zhang S, Chen S, et al. Spatial distribution and comparative analysis of Aconitum alkaloids in Fuzi using DESI-MSI and UHPLC-QTOF-MS. Analyst. 2023;148(7):1603–10.

    Article  CAS  PubMed  ADS  Google Scholar 

  14. Srimany A, Ifa DR, Naik HR, Bhat V, Cooks RG, Pradeep T. Direct analysis of camptothecin from Nothapodytes nimmoniana by desorption electrospray ionization mass spectrometry (DESI-MS). Analyst. 2011;136(15):3066–8.

    Article  CAS  PubMed  ADS  Google Scholar 

  15. Yang Y, Yang Y, Qiu H, Ju Z, Shi Y, Wang Z, et al. Localization of constituents for determining the age and parts of ginseng through ultraperfomance liquid chromatography quadrupole/time of flight-mass spectrometry combined with desorption electrospray ionization mass spectrometry imaging. J Pharm Biomed Anal. 2021;193: 113722.

    Article  CAS  PubMed  Google Scholar 

  16. Mohana Kumara P, Uma Shaanker R, Pradeep T. UPLC and ESI-MS analysis of metabolites of Rauvolfia tetraphylla L. and their spatial localization using desorption electrospray ionization (DESI) mass spectrometric imaging. Phytochemistry. 2019;159:20–9.

    Article  CAS  PubMed  Google Scholar 

  17. Jackson AU, Tata A, Wu C, Perry RH, Haas G, West L, et al. Direct analysis of Stevia leaves for diterpene glycosides by desorption electrospray ionization mass spectrometry. Analyst. 2009;134(5):867–74.

    Article  CAS  PubMed  ADS  Google Scholar 

  18. Xu B, Chen L, Lv F, Pan Y, Fu X, Pei Z. Visualization of metabolites identified in the spatial metabolome of traditional Chinese medicine using DESI-MSI. J Vis Exp. 2022;190. https://doi.org/10.3791/64912.

  19. Li B, Neumann EK, Ge J, Gao W, Yang H, Li P, et al. Interrogation of spatial metabolome of Ginkgo biloba with high-resolution matrix-assisted laser desorption/ionization and laser desorption/ionization mass spectrometry imaging. Plant Cell Environ. 2018;41(11):2693–703.

    Article  CAS  PubMed  Google Scholar 

  20. Administration SFaD. Sichuan provincial standards for Chinese medicinal materials,. Edition). Chengdu: Sichuan Science and Technology Press; 2010. p. 2011.

    Google Scholar 

  21. Schymanski EL, Jeon J, Gulde R, Fenner K, Ruff M, Singer HP, et al. Identifying small molecules via high resolution mass spectrometry: communicating confidence. Environ Sci Technol. 2014;48(4):2097–8.

    Article  CAS  PubMed  ADS  Google Scholar 

  22. Ding X, Xiong L, Zhou Q, Ye Q, Guo L, Liu F. Advances in studies on chemical structure and pharmacological activities of natural nucleosides Journal of Chengdu University of Traditional Chinese Medicine. 2018;41(02):102–8.

    Google Scholar 

  23. Wang R. Advances in pyrimidine. Lett Biotechnol. 2007;18(03):539–42 [in Chinese].

  24. Busse-Wicher M, Gomes TC, Tryfona T, Nikolovski N, Stott K, Grantham NJ, et al. The pattern of xylan acetylation suggests xylan may interact with cellulose microfibrils as a twofold helical screw in the secondary plant cell wall of Arabidopsis thaliana. Plant J. 2014;79(3):492–506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tang H, Han Y, Liu X. Research progress on the pharmacological effects of Cordyceps militaris polysaccharide and adenosine Biological Chemical Engineering. 2022;8(01):164–7.

    Google Scholar 

  26. Zhang G, Liu X, Ma C, Li W, Wang X. Spatial distribution characteristics of metabolities in rhizome of Paris polyphylla var. yunnanensis:based on MALDI-MSI. China Journal of Chinese Materia Medica. 2022;47(05):1222–9.

    PubMed  ADS  Google Scholar 

  27. Huang Y, Wang H, Zhu Y, Huang X, Li S, Wu X, et al. THP9 enhances seed protein content and nitrogen-use efficiency in maize. Nature. 2022;612(7939):292–300.

    Article  CAS  PubMed  ADS  Google Scholar 

  28. Yang D, Zhu H, Zhao Y, Liu W. Research progress on regulation of citrulline metabolism in vegetable crops. China Cucurbits And Vegetables. 2023;36(02):1–10.

    Google Scholar 

  29. Amobonye A, Bhagwat P, Pandey A, Singh S, Pillai S. Biotechnological potential of Beauveria bassiana as a source of novel biocatalysts and metabolites. Crit Rev Biotechnol. 2020;40(7):1019–34.

    Article  CAS  PubMed  Google Scholar 

  30. Zhou X, Li Y, Hong W, Wang Y, Ye B. Effect of maculosin on fibrotic gene expression in lung fibroblasts. Journal of China Pharmaceutical University. 2014;45(04):491–5.

    CAS  Google Scholar 

  31. Wu Q, Li J, Zhu J, Sun X, He D, Li J, et al. Gamma-glutamyl-leucine levels are causally associated with elevated cardio-metabolic risks. Front Nutr. 2022;9: 936220.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Maeda H, Dudareva N. The shikimate pathway and aromatic amino acid biosynthesis in plants. Annu Rev Plant Biol. 2012;63:73–105.

    Article  CAS  PubMed  Google Scholar 

  33. Darwish AG, Das PR, Ismail A, Gajjar P, Balasubramani SP, Sheikh MB, et al. Untargeted metabolomics and antioxidant capacities of muscadine grape genotypes during berry development. Antioxidants (Basel). 2021;10(6):914. https://doi.org/10.1016/j.foodchem.2021.131632.

    Article  CAS  PubMed  Google Scholar 

  34. Michael TP, Mockler TC, Breton G, McEntee C, Byer A, Trout JD, et al. Network discovery pipeline elucidates conserved time-of-day-specific cis-regulatory modules. PLoS Genet. 2008;4(2): e14.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Tarkowski ŁP, Signorelli S, Höfte M. γ-Aminobutyric acid and related amino acids in plant immune responses: emerging mechanisms of action. Plant Cell Environ. 2020;43(5):1103–16.

    Article  CAS  PubMed  Google Scholar 

  36. Han M, Zhang C, Suglo P, Sun S, Wang M, Su T. l-Aspartate: an essential metabolite for plant growth and stress acclimation. Molecules. 2021;26(7):1887. https://doi.org/10.3390/molecules26071887.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Noctor G, Foyer CH. Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol. 1998;49:249–79.

    Article  CAS  PubMed  Google Scholar 

  38. Carrari F, Fernie AR. Metabolic regulation underlying tomato fruit development. J Exp Bot. 2006;57(9):1883–97.

    Article  CAS  PubMed  Google Scholar 

  39. Lea PJ, Miflin BJ. Alternative route for nitrogen assimilation in higher plants. Nature. 1974;251:614–6.

    Article  CAS  PubMed  ADS  Google Scholar 

  40. Jander G, Joshi V. Aspartate-derived amino acid biosynthesis in Arabidopsis thaliana. Arabidopsis Book. 2009;7: e0121.

    Article  PubMed  PubMed Central  Google Scholar 

  41. He Y, Li X, Xie Y. Gamma-glutamyl-leucine levels are causally associated with elevated cardio-metabolic risks. Front Nutr. 2016;52(03):241–9.

    Google Scholar 

  42. Tang L, Xu J, Hou Y, Wu S, Xiong K, He L, et al. Transcriptome analysis of Samsoniella hepiali induced by salicylic acid and crucial genes digging for metabolic pathways of cordycepic acid. Acta Microbiologica Sinica. 2022;62(10):3751–67.

    CAS  Google Scholar 

  43. Lastdrager J, Hanson J, Smeekens S. Sugar signals and the control of plant growth and development. J Exp Bot. 2014;65(3):799–807.

    Article  CAS  PubMed  Google Scholar 

  44. Chen S, Peng Y, Zhou H, Yu B, Dong Y, Teng S. Advances in plant alglucan metabolism and alglucose-6-phosphate signaling. Plant Physiol J. 2014;50(03):233–42.

    CAS  Google Scholar 

  45. Zhang Y. The role of seaweed sugar in resistance to high temperature stress and the effect of phytohormones on the reproductive development of A. longifolia [master's degree]: Ningbo University;2021[in Chinese].

  46. Geigenberger P. Regulation of starch biosynthesis in response to a fluctuating environment. Plant Physiol. 2011;155(4):1566–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Li Z, Peng Y, Yin S, Han L. Effects of exogenous mannose application on drought tolerance, sugars, and sugar alcohol accumulation in white clover Acta Prataculturae Sinica. 2019;28(12):85–93.

    Google Scholar 

  48. Aoki M, Fujii K, Kitayama K. Environmental control of root exudation of low-molecular weight organic acids in tropical rainforests. Ecosystems. 2012;15(7):1194–203.

    Article  CAS  Google Scholar 

  49. Araújo W, Nunes-Nesi A, Nikoloski Z, Sweetlove LJ, Fernie AR. Metabolic control and regulation of the tricarboxylic acid cycle in photosynthetic and heterotrophic plant tissues. Plant, Cell Environ. 2011;35(1):1–21.

    Article  PubMed  Google Scholar 

  50. Wang H, Zhang S, Li H, Wang X, Huang L, Zhang S. Advances in the study of plant azelaic acid. Plant Physiology Journal. 2022;58(03):483–91.

    Google Scholar 

  51. Yu JQ, Matsui Y. Phytotoxic substances in root exudates of cucumber (Cucumis sativus L.). J Chem Ecol. 1994;20(1):21–31.

    Article  CAS  PubMed  Google Scholar 

  52. Foyer CH, Noctor G. Redox signaling in plants. Antioxid Redox Signal. 2013;18(16):2087–90.

    Article  CAS  PubMed  Google Scholar 

  53. Mendiondo GM, Gibbs DJ, Szurman-Zubrzycka M, Korn A, Marquez J, Szarejko I, et al. Enhanced waterlogging tolerance in barley by manipulation of expression of the N-end rule pathway E3 ligase PROTEOLYSIS6. Plant Biotechnol J. 2016;14(1):40–50.

    Article  CAS  PubMed  Google Scholar 

  54. Farmer EE, Ryan CA. Octadecanoid precursors of jasmonic acid activate the synthesis of wound-inducible proteinase inhibitors. Plant Cell. 1992;4(2):129–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Li X, Zhou B, Liu N, Fu Y. Effect of different concentration dibutyl phthalate(DBP) on the germination and seedlings growth of three vegetable seeds Acta Agriculturae Boreali-Occidentalis Sinica. 2009;18(2):217–20,24 [in Chinese].

  56. Hannun YA, Obeid LM. Sphingolipids and their metabolism in physiology and disease. Nat Rev Mol Cell Biol. 2017;19(3):175–91. https://doi.org/10.1038/nrm.2017.107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhao X. Study on the accumulation of betaine synthesis during fruit growth and development of Lycium barbarum [master's degree]: Ningxia University; 2022 [in Chinese].

Download references

Acknowledgements

The authors thank all members of the laboratory for helpful discussions and comments on the manuscript.

Funding

The authors acknowledge financial supports from the Key R&D projects in Sichuan Province (2023YFS0458), Chengdu University of Traditional Chinese Medicine School of Pharmacy/Modern Chinese Medicine Industry College Young Teachers Special (2022JJRC05).

Author information

Authors and Affiliations

Authors

Contributions

Changjiang Hu, Yongxiang Gao, and Zhimin Chen are the corresponding authors of the study, and Zhinmin Chen contributed to the experimental design as well as the full-text English grammer and fluency guide. Mayijie Cao and Jie Wu are the first authors and responsible for collecting materials and writing the paper. Xiaoli Zhu, Zhuolin Jia, Ye Zhou, and Lingying Yu helped organize the information and edited it in the article table. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Changjiang Hu, Yongxiang Gao or Zhimin Chen.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, M., Wu, J., Zhu, X. et al. Tissue distribution of metabolites in Cordyceps cicadae determined by DESI-MSI analysis. Anal Bioanal Chem 416, 1883–1906 (2024). https://doi.org/10.1007/s00216-024-05188-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-024-05188-x

Keywords

Navigation