Skip to main content
Log in

Label-free detection of biomolecules using inductively coupled plasma mass spectrometry (ICP-MS)

  • Critical Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Bioassays using inductively coupled plasma mass spectrometry (ICP-MS) have gained increasing attention because of the high sensitivity of ICP-MS and the various strategies of labeling biomolecules with detectable metal tags. The classic strategy to tag the target biomolecules is through direct antibody-antigen interaction and DNA hybridization, and requires the separation of the bound from the unbound tags. Label-free ICP-MS techniques for biomolecular assays do not require direct labeling: they generate detectable metal ions indirectly from specific biomolecular reactions, such as enzymatic cleavage. Here, we highlight the development of three main strategies of label-free ICP-MS assays for biomolecules: (1) enzymatic cleavage of metal-labeled substrates, (2) release of immobilized metal ions from the DNA backbone, and (3) nucleic acid amplification-assisted aggregation and release of metal tags to achieve amplified detection. We briefly describe the fundamental basis of these label-free ICP-MS assays and discuss the benefits and drawbacks of various designs. Future research is needed to reduce non-specific adsorption and minimize background and interference. Analytical innovations are also required to confront challenges faced by in vivo applications.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Grammel M, Hang HC. Chemical reporters for biological discovery. Nat Chem Biol. 2013;9:475–84. https://doi.org/10.1038/nchembio.1296.

    Article  CAS  PubMed  Google Scholar 

  2. Kobayashi H, Ogawa M, Alford R, Choyke PL, Urano Y. New strategies for fluorescent probe design in medical diagnostic imaging. Chem Rev. 2010;110:2620–40. https://doi.org/10.1021/cr900263j.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Song HJ, Su YY, Zhang LC, Lv Y. Quantum dots-based chemiluminescence probes: an overview. Luminescence. 2019;34:530–43. https://doi.org/10.1002/bio.3633.

    Article  PubMed  Google Scholar 

  4. Muzyka K. Current trends in the development of the electrochemiluminescent immunosensors. Biosens Bioelectron. 2014;54:393–407. https://doi.org/10.1016/j.bios.2013.11.011.

    Article  CAS  PubMed  Google Scholar 

  5. Hulspas R, O’Gorman MRG, Wood BL, Gratama JW, Sutherland DR. Considerations for the control of background fluorescence in clinical flow cytometry, Cytometry Part B-Clinical. Cytometry. 2009;76B:355–64. https://doi.org/10.1002/cyto.b.20485.

    Article  CAS  Google Scholar 

  6. Chattopadhyay PK, Price DA, Harper TF, Betts MR, Yu J, Gostick E, Perfetto SP, Goepfert P, Koup RA, De Rosa SC, Bruchez MP, Roederer M. Quantum dot semiconductor nanocrystals for immunophenotyping by polychromatic flow cytometry. Nat Med. 2006;12:972–7. https://doi.org/10.1038/nm1371.

    Article  CAS  PubMed  Google Scholar 

  7. Prange A, Proefrock D. Chemical labels and natural element tags for the quantitative analysis of bio-molecules. J Anal At Spectrom. 2008;23:432–59. https://doi.org/10.1039/b717916m.

    Article  CAS  Google Scholar 

  8. Zhang C, Wu FB, Zhang YY, Wang X, Zhang XR. A novel combination of immunoreaction and ICP-MS as a hyphenated technique for the determination of thyroid-stimulating hormone (TSH) in human serum. J Anal At Spectrom. 2001;16:1393–6. https://doi.org/10.1039/b106387c.

    Article  CAS  Google Scholar 

  9. Liu R, Wu P, Yang L, Hou X, Lv Y. Inductively coupled plasma mass spectrometry-based immunoassay: a review. Mass Spectrom Rev. 2014;33:373–93. https://doi.org/10.1002/mas.21391.

    Article  CAS  PubMed  Google Scholar 

  10. Quinn ZA, Baranov VI, Tanner SD, Wrana JL. Simultaneous determination of proteins using an element-tagged immunoassay coupled with ICP-MS detection. J Anal At Spectrom. 2002;17:892–6. https://doi.org/10.1039/b202306g.

    Article  CAS  Google Scholar 

  11. Zhang C, Wu FB, Zhang XR. ICP-MS-based competitive immunoassay for the determination of total thyroxin in human serum. J Anal At Spectrom. 2002;17:1304–7. https://doi.org/10.1039/b205623b.

    Article  CAS  Google Scholar 

  12. Lou X, Zhang G, Herrera I, Kinach R, Ornatsky O, Baranov V, Nitz M, Winnik MA. Polymer-based elemental tags for sensitive bioassays. Angew Chem Int Ed. 2007;46:6111–4. https://doi.org/10.1002/anie.200700796.

    Article  CAS  Google Scholar 

  13. Hu S, Zhang S, Hu Z, Xing Z, Zhang X. Detection of multiple proteins on one spot by laser ablation inductively coupled plasma mass spectrometry and application to immuno-microarray with element-tagged antibodies. Anal Chem. 2007;79:923–9. https://doi.org/10.1021/ac061269p.

    Article  CAS  PubMed  Google Scholar 

  14. Huang Z, Zhao X, Hu J, Zhang C, Xie X, Liu R, Lv Y. Single-nanoparticle differential immunoassay for multiplexed gastric cancer biomarker monitoring. Anal Chem. 2022;94:12899–906. https://doi.org/10.1021/acs.analchem.2c03013.

    Article  CAS  PubMed  Google Scholar 

  15. Yuan R, Ge FC, Liang Y, Zhou Y, Yang LM, Wang QQ. Viruslike element-tagged nanoparticle inductively coupled plasma mass spectrometry signal multiplier: membrane biomarker mediated cell counting. Anal Chem. 2019;91:4948–52. https://doi.org/10.1021/acs.analchem.9b00749.

    Article  CAS  PubMed  Google Scholar 

  16. Li F, Zhao Q, Wang CA, Lu XF, Li XF, Le XC. Detection of Escherichia coli O157:H7 using gold nanoparticle labeling and inductively coupled plasma mass spectrometry. Anal Chem. 2010;82:3399–403. https://doi.org/10.1021/ac100325f.

    Article  CAS  PubMed  Google Scholar 

  17. Bandura DR, Baranov VI, Ornatsky OI, Antonov A, Kinach R, Lou X, Pavlov S, Vorobiev S, Dick JE, Tanner SD. Mass cytometry: technique for real Time single cell multitarget immunoassay based on inductively coupled plasma time-of-flight mass spectrometry. Anal Chem. 2009;81:6813–22. https://doi.org/10.1021/ac901049w.

    Article  CAS  PubMed  Google Scholar 

  18. Ornatsky O, Bandura D, Baranov V, Nitz M, Winnik MA, Tanner S. Highly multiparametric analysis by mass cytometry. J Immunol Methods. 2010;361:1–20. https://doi.org/10.1016/j.jim.2010.07.002.

    Article  CAS  PubMed  Google Scholar 

  19. Arnett LP, Rana R, Chung WWY, Li XC, Abtahi M, Majonis D, Bassan J, Nitz M, Winnik MA. Reagents for mass cytometry. Chem Rev. 2023;123:1166–205. https://doi.org/10.1021/acs.chemrev.2c00350.

    Article  CAS  PubMed  Google Scholar 

  20. Bendall SC, Simonds EF, Qiu P, Amir EAD, Krutzik PO, Finck R, Bruggner RV, Melamed R, Trejo A, Ornatsky OI, Balderas RS, Plevritis SK, Sachs K, Pe’er D, Tanner SD, Nolan GP. Single-cell mass cytometry of differential immune and drug responses qcross a human hematopoietic continuum. Science. 2011;332:687–96. https://doi.org/10.1126/science.1198704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Han G, Spitzer MH, Bendall SC, Fantl WJ, Nolan GP. Metal-isotope-tagged monoclonal antibodies for high-dimensional mass cytometry. Nat Protoc. 2018;13:2121–48. https://doi.org/10.1038/s41596-018-0016-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Guo Y, Xu M, Yang L, Wang Q. Strategy for absolute quantification of proteins: CH3Hg+ labeling integrated molecular and elemental mass spectrometry. J Anal At Spectrom. 2009;24:1184–7. https://doi.org/10.1039/b902241d.

    Article  CAS  Google Scholar 

  23. Pereira Navaza A, Ruiz Encinar J, Ballesteros A, Gonzalez JM, Sanz-Medel A. Capillary HPLC-ICPMS and tyrosine iodination for the absolute quantification of peptides using generic standards. Anal Chem. 2009;81:5390–9. https://doi.org/10.1021/ac9005606.

    Article  CAS  PubMed  Google Scholar 

  24. Jakubowski N, Waentig L, Hayen H, Venkatachalam A, von Bohlen A, Roos PH, Manz A. Labelling of proteins with 2-(4-isothiocyanatobenzyl)-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetra acetic acid and lanthanides and detection by ICP-MS. J Anal At Spectrom. 2008;23:1497–507. https://doi.org/10.1039/b800346g.

    Article  CAS  Google Scholar 

  25. Schwarz G, Mueller L, Beck S, Linscheid MW. DOTA based metal labels for protein quantification: a review. J Anal At Spectrom. 2014;29:221–33. https://doi.org/10.1039/c3ja50277e.

    Article  CAS  Google Scholar 

  26. Liu R, Hou X, Lv Y, McCooeye M, Yang L, Mester Z. Absolute quantification of peptides by isotope dilution liquid chromatography-inductively coupled plasma mass spectrometry and gas chromatography/mass spectrometry. Anal Chem. 2013;85:4087–93. https://doi.org/10.1021/ac400158u.

    Article  CAS  PubMed  Google Scholar 

  27. Yan X, Xu M, Yang L, Wang Q. Absolute quantification of intact proteins via 1,4,7,10-tetraazacyclododecane-1,4,7-trisacetic acid-10-maleimidoethylacetamide-europium labeling and HPLC coupled with species-unspecific isotope dilution ICPMS. Anal Chem. 2010;82:1261–9. https://doi.org/10.1021/ac902163x.

    Article  CAS  PubMed  Google Scholar 

  28. Han G, Zhang S, Xing Z, Zhang X. Absolute and relative quantification of multiplex DNA assays based on an elemental labeling strategy. Angew Chem Int Ed. 2013;52:1466–71. https://doi.org/10.1002/anie.201206903.

    Article  CAS  Google Scholar 

  29. Martin ME, Parameswarappa SG, O’Dorisio MS, Pigge FC, Schultz MK. A DOTA-peptide conjugate by copper-free click chemistry. Bioorg Med Chem Lett. 2010;20:4805–7. https://doi.org/10.1016/j.bmcl.2010.06.111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yan X, Luo Y, Zhang Z, Li Z, Luo Q, Yang L, Zhang B, Chen H, Bai P, Wang Q. Europium-labeled activity-based probe through click chemistry: absolute serine protease quantification using 153Eu isotope dilution ICP/MS. Angew Chem Int Ed. 2012;51:3358–63. https://doi.org/10.1002/anie.201108277.

    Article  CAS  Google Scholar 

  31. Razumienko E, Ornatsky O, Kinach R, Milyavsky M, Lechman E, Baranov V, Winnik MA, Tanner SD. Element-tagged immunoassay with ICP-MS detection: evaluation and comparison to conventional immunoassays. J Immunol Methods. 2008;336:56–63. https://doi.org/10.1016/j.jim.2008.03.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Han G, Xing Z, Dong Y, Zhang S, Zhang X. One-step homogeneous DNA assay with single-nanoparticle detection. Angew Chem Int Ed. 2011;50:3462–5. https://doi.org/10.1002/anie.201006838.

    Article  CAS  Google Scholar 

  33. He Y, Zhang YY, Wei C, Li CY, Gao Y, Liu R. Illuminate proteins and peptides by elemental tag for HPLC-ICP-MS detection. Appl Spectrosc Rev. 2014;49:492–512. https://doi.org/10.1080/05704928.2013.860899.

    Article  CAS  Google Scholar 

  34. Yan X, Li Z, Liang Y, Yang L, Zhang B, Wang Q. A chemical “hub” for absolute quantification of a targeted protein: orthogonal integration of elemental and molecular mass spectrometry. Chem Commun. 2014;50:6578–81. https://doi.org/10.1039/c3cc48460b.

    Article  CAS  Google Scholar 

  35. de Bang TC, Husted S. Lanthanide elements as labels for multiplexed and targeted analysis of proteins, DNA and RNA using inductively-coupled plasma mass spectrometry. TrAC Trends Anal Chem. 2015;72:45–52. https://doi.org/10.1016/j.trac.2015.03.021.

    Article  CAS  Google Scholar 

  36. Zhang S, Han G, Xing Z, Zhang S, Zhang X. Multiplex DNA assay based on nanoparticle probes by single particle inductively coupled plasma mass spectrometry. Anal Chem. 2014;86:3541–7. https://doi.org/10.1021/ac404245z.

    Article  CAS  PubMed  Google Scholar 

  37. Liu R, Zhang S, Wei C, Xing Z, Zhang S, Zhang X. Metal stable isotope tagging: renaissance of radioimmunoassay for multiplex and absolute quantification of biomolecules. Acc Chem Res. 2016;49:775–83. https://doi.org/10.1021/acs.accounts.5b00509.

    Article  CAS  PubMed  Google Scholar 

  38. Liu Z, Li X, Xiao G, Chen B, He M, Hu B. Application of inductively coupled plasma mass spectrometry in the quantitative analysis of biomolecules with exogenous tags: a review. TrAC Trends Anal Chem. 2017;93:78–101. https://doi.org/10.1016/j.trac.2017.05.008.

    Article  CAS  Google Scholar 

  39. Turk B. Targeting proteases: successes, failures and future prospects. Nat Rev Drug Discovery. 2006;5:785–99. https://doi.org/10.1038/nrd2092.

    Article  CAS  PubMed  Google Scholar 

  40. Lopez-Otin C, Overall CM. Protease degradomics: a new challenge for proteomics. Nat Rev Mol Cell Biol. 2002;3:509–19. https://doi.org/10.1038/nrm858.

    Article  CAS  PubMed  Google Scholar 

  41. Antalis TM, Shea-Donohue T, Vogel SN, Sears C, Fasano A. Mechanisms of disease: protease functions in intestinal mucosal pathobiology. Nat Clin Pract Gastroenterol Hepatol. 2007;4:393–402. https://doi.org/10.1038/ncpgasthep0846.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Thornberry NA, Lazebnik Y. Caspases: enemies within. Science. 1998;281:1312–6. https://doi.org/10.1126/science.281.5381.1312.

    Article  CAS  PubMed  Google Scholar 

  43. Weissleder R, Tung CH, Mahmood U, Bogdanov A. In vivo imaging of tumors with protease-activated near-infrared fluorescent probes. Nat Biotechnol. 1999;17:375–8. https://doi.org/10.1038/7933.

    Article  CAS  PubMed  Google Scholar 

  44. Olson ES, Jiang T, Aguilera TA, Nguyen QT, Ellies LG, Scadeng M, Tsien RY. Activatable cell penetrating peptides linked to nanoparticles as dual probes for in vivo fluorescence and MR imaging of proteases. Proc Natl Acad Sci U S A. 2010;107:4311–6. https://doi.org/10.1073/pnas.0910283107.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Lathia US, Ornatsky O, Baranov V, Nitz M. Development of inductively coupled plasma-mass spectrometry-based protease assays. Anal Biochem. 2010;398:93–8. https://doi.org/10.1016/j.ab.2009.11.010.

    Article  CAS  PubMed  Google Scholar 

  46. Yan X, Yang L, Wang Q. Lanthanide-coded protease-specific peptide-nanoparticle probes for a label-free multiplex protease assay using element mass spectrometry: a proof-of-concept study. Angew Chem Int Ed. 2011;50:5130–3. https://doi.org/10.1002/anie.201101087.

    Article  CAS  Google Scholar 

  47. Jin X, Yang L, Yan X, Wang Q. Screening platform based on inductively coupled plasma mass spectrometry for beta-site amyloid protein cleaving enzyme 1 (BACE1) inhibitors. ACS Chem Neurosci. 2021;12:1093–9. https://doi.org/10.1021/acschemneuro.0c00816.

    Article  CAS  PubMed  Google Scholar 

  48. Poreba M, Groborz KM, Rut W, Pore M, Snipas SJ, Vizovisek M, Turk B, Kuhn P, Drag M, Salvesen GS. Multiplexed probing of proteolytic enzymes using mass cytometry-compatible activity-based probes. J Am Chem Soc. 2020;142:16704–15. https://doi.org/10.1021/jacs.0c06762.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kasperkiewicz P, Poreba M, Snipas SJ, Parker H, Winterbourn CC, Salvesen GS, Drag M. Design of ultrasensitive probes for human neutrophil elastase through hybrid combinatorial substrate library profiling. Proc Natl Acad Sci U S A. 2014;111:2518–23. https://doi.org/10.1073/pnas.1318548111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Feng D, Tian F, Qin W, Qian X. A dual-functional lanthanide nanoprobe for both living cell imaging and ICP-MS quantification of active protease. Chem Sci. 2016;7:2246–50. https://doi.org/10.1039/c5sc03363b.

    Article  CAS  PubMed  Google Scholar 

  51. Li X, Chen B, He M, Hu B. A dual-functional probe for quantification and imaging of intracellular telomerase. Sensors Actuators B Chemical. 2018;277:164–71. https://doi.org/10.1016/j.snb.2018.09.014.

    Article  CAS  Google Scholar 

  52. Yin X, Yang B, Chen B, He M, Hu B. Multifunctional gold nanocluster decorated metal-organic framework for real-time monitoring of targeted drug delivery and quantitative evaluation of cellular therapeutic response. Anal Chem. 2019;91:10596–603. https://doi.org/10.1021/acs.analchem.9b01721.

    Article  CAS  PubMed  Google Scholar 

  53. Ono A, Torigoe H, Tanaka Y, Okamoto I. Binding of metal ions by pyrimidine base pairs in DNA duplexes. Chem Soc Rev. 2011;40:5855–66. https://doi.org/10.1039/c1cs15149e.

    Article  CAS  PubMed  Google Scholar 

  54. Porchetta A, Vallee-Belisle A, Plaxco KW, Ricci F. Allosterically tunable, DNA-based switches triggered by heavy metals. J Am Chem Soc. 2013;135:13238–41. https://doi.org/10.1021/ja404653q.

    Article  CAS  PubMed  Google Scholar 

  55. Li Y, Sun SK, Yang JL, Jiang Y. Label-free DNA hybridization detection and single base-mismatch discrimination using CE-ICP-MS assay. Analyst. 2011;136:5038–45. https://doi.org/10.1039/c1an15592j.

    Article  CAS  PubMed  Google Scholar 

  56. Chen P, Huang K, Dai R, Sawyer E, Sun K, Ying B, Wei X, Geng J. Sensitive CVG-AFS/ICP-MS label-free nucleic acid and protein assays based on a selective cation exchange reaction and simple filtration separation. Analyst. 2019;144:2797–802. https://doi.org/10.1039/c8an01926f.

    Article  CAS  PubMed  Google Scholar 

  57. Dai R, Hu P, Wang X, Wang S, Song X, Huang K, Chen P. Visual/CVG-AFS/ICP-MS multi-mode and label-free detection of target nucleic acids based on a selective cation exchange reaction and enzyme-free strand displacement amplification. Analyst. 2019;144:4407–12. https://doi.org/10.1039/c9an00642g.

    Article  CAS  PubMed  Google Scholar 

  58. Mertig M, Ciacchi LC, Seidel R, Pompe W, De Vita A. DNA as a selective metallization template. Nano Lett. 2002;2:841–4. https://doi.org/10.1021/nl025612r.

    Article  CAS  Google Scholar 

  59. Chen Z, Liu C, Cao F, Ren J, Qu X. DNA metallization: principles, methods, structures, and applications. Chem Soc Rev. 2018;47:4017–72. https://doi.org/10.1039/c8cs00011e.

    Article  CAS  PubMed  Google Scholar 

  60. Rotaru A, Dutta S, Jentzsch E, Gothelf K, Mokhir A. Selective dsDNA-templated formation of copper nanoparticles in solution. Angew Chem Int Ed. 2010;49:5665–7. https://doi.org/10.1002/anie.200907256.

    Article  CAS  Google Scholar 

  61. Song QW, Shi Y, He DC, Xu SH, Ouyang J. Sequence-dependent dsDNA-templated formation of fluorescent copper nanoparticles. Chem Europ J. 2015;21:2417–22. https://doi.org/10.1002/chem.201405726.

    Article  CAS  Google Scholar 

  62. Fan D, Wang E, Dong S. Simple, fast, label-free, and nanoquencher-free system for operating multivalued DNA logic gates using polythymine templated CuNPs as signal reporters. Nano Res. 2017;10:2560–9. https://doi.org/10.1007/s12274-017-1458-x.

    Article  CAS  Google Scholar 

  63. Liu G, Shao Y, Peng J, Dai W, Liu L, Xu S, Wu F, Wu X. Highly thymine-dependent formation of fluorescent copper nanoparticles templated by ss-DNA. Nanotechnology. 2013;24: 345502. https://doi.org/10.1088/0957-4484/24/34/345502.

    Article  CAS  PubMed  Google Scholar 

  64. Qing Z, He X, He D, Wang K, Xu F, Qing T, Yang X. Poly(thymine)-templated selective formation of fluorescent copper nanoparticles. Angew Chem Int Ed. 2013;52:9719–22. https://doi.org/10.1002/anie.201304631.

    Article  CAS  Google Scholar 

  65. Liu R, Wang C, Hu J, Su Y, Lv Y. DNA-templated copper nanoparticles: versatile platform for label-free bioassays. TrAC Trends Anal Chem. 2018;105:436–52. https://doi.org/10.1016/j.trac.2018.06.003.

    Article  CAS  Google Scholar 

  66. Qing Z, Mao Z, Qing T, He X, Zou Z, He D, Shi H, Huang J, Liu J, Wang K. Visual and portable strategy for copper(II) detection based on a striplike poly(thymine)-caged and microwell-printed hydrogel. Anal Chem. 2014;86:11263–8. https://doi.org/10.1021/ac502843t.

    Article  CAS  PubMed  Google Scholar 

  67. Song Q, Wang R, Sun F, Chen H, Wang Z, Na N, Ouyang J. A nuclease-assisted label-free aptasensor for fluorescence turn-on detection of ATP based on the in situ formation of copper nanoparticles. Biosens Bioelectron. 2017;87:760–3. https://doi.org/10.1016/j.bios.2016.09.029.

    Article  CAS  PubMed  Google Scholar 

  68. Ye T, Li C, Su C, Ji X, Zheng J, Tinnefeld P, He Z. Enzymatic polymerization of poly(thymine) for the synthesis of copper nanoparticles with tunable size and their application in enzyme sensing. Chem Commun. 2015;51:8644–7. https://doi.org/10.1039/c5cc01517k.

    Article  CAS  Google Scholar 

  69. Liu R, Wang C, Xu Y, Hu J, Deng D, Lv Y. Label-free DNA assay by metal stable isotope detection. Anal Chem. 2017;89:13269–74. https://doi.org/10.1021/acs.analchem.7b03327.

    Article  CAS  PubMed  Google Scholar 

  70. Hu JY, Wang CQ, Liu R, Su YY, Lv Y. Poly(thymine)-CuNPs: bimodal methodology for accurate and selective detection of TNT at sub-ppt levels. Anal Chem. 2018;90:14469–74. https://doi.org/10.1021/acs.analchem.8b04161.

    Article  CAS  PubMed  Google Scholar 

  71. Hu J, Jiang M, Liu R, Lv Y. Label-free CRISPR/Cas9 assay for site-specific nucleic acid detection. Anal Chem. 2019;91:10870–8. https://doi.org/10.1021/acs.analchem.9b02641.

    Article  CAS  PubMed  Google Scholar 

  72. Liu R, Hu J, Chen Y, Jiang M, Lv Y. Label-free nuclease assay with long-term stability. Anal Chem. 2019;91:8691–6. https://doi.org/10.1021/acs.analchem.9b02467.

    Article  CAS  PubMed  Google Scholar 

  73. Gonzalez TI, Espina M, Sierra LM, Bettmer J, Blanco-Gonzalez E, Montes-Bayon M, Sanz-Medel A. Enhanced detection of DNA sequences using end-point PCR amplification and online gel electrophoresis (GE)-ICP-MS: determination of gene copy number variations. Anal Chem. 2014;86:11028–32. https://doi.org/10.1021/ac502671f.

    Article  CAS  PubMed  Google Scholar 

  74. Hu Z, Sun G, Jiang W, Xu F, Zhang Y, Xia M, Pan X, Xing Z, Zhang S, Zhang X. Chemical-modified nucleotide-based elemental tags for high-sensitive immunoassay. Anal Chem. 2019;91:5980–6. https://doi.org/10.1021/acs.analchem.9b00405.

    Article  CAS  PubMed  Google Scholar 

  75. Deng C, Zhang C-H, Tang H, Jiang J-H. ICP-MS DNA assay based on lanthanide labels and hybridization chain reaction amplification. Anal Methods. 2015;7:5767–71. https://doi.org/10.1039/c5ay00679a.

    Article  CAS  Google Scholar 

  76. Liu Y, Ding Y, Gao Y, Liu R, Hu X, Lv Y. Enzyme-free amplified DNA assay: five orders of linearity provided by metal stable isotope detection. Chem Commun. 2018;54:13782–5. https://doi.org/10.1039/c8cc07036a.

    Article  CAS  Google Scholar 

  77. Liu X, Zhang SQ, Cheng ZH, Wei X, Yang T, Yu YL, Chen ML, Wang JH. Highly sensitive detection of microRNA-21 with ICPMS via hybridization accumulation of Upconversion nanoparticles. Anal Chem. 2018;90:12116–22. https://doi.org/10.1021/acs.analchem.8b03038.

    Article  CAS  PubMed  Google Scholar 

  78. He Y, Chen S, Huang L, Wang Z, Wu Y, Fu F. Combination of magnetic-beads-based multiple metal nanoparticles labeling with hybridization chain reaction amplification for simultaneous detection of multiple cancer cells with inductively coupled plasma mass spectrometry. Anal Chem. 2019;91:1171–7. https://doi.org/10.1021/acs.analchem.8b05085.

    Article  CAS  PubMed  Google Scholar 

  79. Li BR, Tang H, Yu RQ, Jiang JH. Single-nanoparticle ICPMS DNA assay based on hybridization-chain-reaction-mediated spherical nucleic acid assembly. Anal Chem. 2020;92:2379–82. https://doi.org/10.1021/acs.analchem.9b05741.

    Article  CAS  PubMed  Google Scholar 

  80. Zhang X, Xiao GY, Chen BB, He M, Hu B. Lectin affinity based elemental labeling with hybridization chain reaction for the sensitive determination of avian influenza A (H9N2) virions. Talanta. 2018;188:442–7. https://doi.org/10.1016/j.talanta.2018.06.005.

    Article  CAS  PubMed  Google Scholar 

  81. Hu JY, Li ZY, Zhang H, Liu R, Lv Y. Tag-free methodology for ultrasensitive biosensing of miRNA based on intrinsic isotope detection. Anal Chem. 2020;92:8523–9. https://doi.org/10.1021/acs.analchem.0c01295.

    Article  CAS  PubMed  Google Scholar 

  82. Wen Y, Zhang XW, Li YY, Chen S, Yu YL, Wang JH. Ultramultiplex NaLnF4 nanosatellites combined with ICP-MS for exosomal multi-miRNA analysis and cancer classification. Anal Chem. 2022;94:16196–203. https://doi.org/10.1021/acs.analchem.2c03727.

    Article  CAS  PubMed  Google Scholar 

  83. Shen JW, Li TT, Wang M, Yao B. Isothermal and enzyme-free microRNA assay based on catalytic hairpin assembly and rare earth element labeled probes. Sensors Actuators B Chemical. 2022;357:131364. https://doi.org/10.1016/j.snb.2022.131364.

    Article  CAS  Google Scholar 

  84. Luo Y, Yan X, Huang Y, Wen R, Li Z, Yang L, Yang CJ, Wang Q. ICP-MS-based multiplex and ultrasensitive assay of viruses with lanthanide-coded biospecific tagging and amplification strategies. Anal Chem. 2013;85:9428–32. https://doi.org/10.1021/ac402446a.

    Article  CAS  PubMed  Google Scholar 

  85. He Y, Chen D, Li M, Fang L, Yang W, Xu L, Fu F. Rolling circle amplification combined with gold nanoparticles-tag for ultra sensitive and specific quantification of DNA by inductively coupled plasma mass spectrometry. Biosens Bioelectron. 2014;58:209–13. https://doi.org/10.1016/j.bios.2014.02.072.

    Article  CAS  PubMed  Google Scholar 

  86. Li X-M, Luo J, Zhang N-B, Wei Q-L. Nucleic acid quantification using nicking-displacement, rolling circle amplification and bio-bar-code mediated triple-amplification. Anal Chim Acta. 2015;881:117–23. https://doi.org/10.1016/j.aca.2015.05.011.

    Article  CAS  PubMed  Google Scholar 

  87. Xu Y, Xiao GY, Chen BB, He M, Hu B. Single particle inductively coupled plasma mass spectrometry- based homogeneous detection of HBV DNA with rolling circle amplification-induced gold nanoparticle agglomeration. Anal Chem. 2022;94:10011–8. https://doi.org/10.1021/acs.analchem.2c00272.

    Article  CAS  PubMed  Google Scholar 

  88. Zhang J, Zhou RX, Jin YW, Cheng NS. Magnetic immunoassay for tumor clinical diagnosis based on rolling circular amplification (RCA) coupled with ICP-MS. Microchem J. 2021;160: 105541. https://doi.org/10.1016/j.microc.2020.105541.

    Article  CAS  Google Scholar 

  89. Chen B, Xiao G, He M, Hu B. Elemental mass spectrometry and fluorescence dual-mode strategy for ultrasensitive label-free detection of HBV DNA. Anal Chem. 2021;93:9454–61. https://doi.org/10.1021/acs.analchem.1c01180.

    Article  CAS  PubMed  Google Scholar 

  90. Li XT, Chen BB, He M, Hu B. Immunodetection and counting of circulating tumor cells (HepG2) by combining gold nanoparticle labeling, rolling circle amplification and ICP-MS detection of gold. Microchim Acta. 2019;186:344. https://doi.org/10.1007/s00604-019-3476-8.

    Article  CAS  Google Scholar 

  91. Brückner K, Schwarz K, Beck S, Linscheid MW. DNA quantification via ICP-MS using lanthanide-labeled probes and ligation-mediated amplification. Anal Chem. 2014;86:585–91. https://doi.org/10.1021/ac402668p.

    Article  CAS  PubMed  Google Scholar 

  92. Wang C, Liu R, Hu J, Lv Y. Ratiometric DNA walking machine for accurate and amplified bioassay. Chemistry. 2019;25:12270–4. https://doi.org/10.1002/chem.201903034.

    Article  CAS  PubMed  Google Scholar 

  93. Wu N, Wang K, Wang YT, Chen ML, Chen XW, Yang T, Wang JH. Three-dimensional DNA nanomachine biosensor by integrating DNA walker and rolling machine cascade amplification for ultrasensitive detection of cancer-related gene. Anal Chem. 2020;92:11111–8. https://doi.org/10.1021/acs.analchem.0c01074.

    Article  CAS  PubMed  Google Scholar 

  94. Liu SC, He M, Chen BB, Yin X, Kang Q, Xu Y, Hu B. A cascade amplification strategy for the detection of DNA methyltransferase activity by elemental labeling inductively coupled plasma mass spectrometry. Sensors Actuators B Chemical. 2022;362: 131758. https://doi.org/10.1016/j.snb.2022.131758.

    Article  CAS  Google Scholar 

  95. Kang Q, He M, Chen BB, Xiao GY, Hu B. MNAzyme-catalyzed amplification assay with lanthanide tags for the simultaneous detection of multiple microRNAs by inductively coupled plasma-mass spectrometry. Anal Chem. 2021;93:737–44. https://doi.org/10.1021/acs.analchem.0c02455.

    Article  CAS  PubMed  Google Scholar 

  96. Liu SC, Wu JY, He M, Chen BB, Kang Q, Xu Y, Yin X, Hu B. DNA tetrahedron-based MNAzyme for sensitive detection of microRNA with elemental tagging. ACS Appl Mater Interf. 2021;13:59076–84. https://doi.org/10.1021/acsami.1c17234.

    Article  CAS  Google Scholar 

  97. Yin X, Chen B, He M, Hu B. A Homogeneous multicomponent nucleic acid enzyme assay for universal nucleic acid detection by single-particle inductively coupled plasma mass spectrometry. Anal Chem. 2021;93:4952–9. https://doi.org/10.1021/acs.analchem.0c05444.

    Article  CAS  PubMed  Google Scholar 

  98. Yin X, Chen BB, He M, Hu B. Agarose-droplet-based digital LAMP assay for counting virus DNA in single-particle ICP-MS. Anal Chem. 2022;94:6582–90. https://doi.org/10.1021/acs.analchem.2c00427.

    Article  CAS  PubMed  Google Scholar 

  99. Zhang S, Liu R, Xing Z, Zhang S, Zhang X. Multiplex miRNA assay using lanthanide-tagged probes and the duplex-specific nuclease amplification strategy. Chem Commun. 2016;52:14310–3. https://doi.org/10.1039/c6cc08334j.

    Article  CAS  Google Scholar 

  100. Zhou J, Hu JY, Liu R, Wang CQ, Lv Y. Dual-amplified CRISPR-Cas12a bioassay for HIV-related nucleic acids. Chem Commun. 2022;58:4247–50. https://doi.org/10.1039/d2cc00792d.

    Article  CAS  Google Scholar 

  101. Zhan XH, Zhou J, Jiang YJ, An P, Luo B, Lan F, Ying BW, Wu Y. DNA tetrahedron-based CRISPR bioassay for treble-self-amplified and multiplex HPV-DNA detection with elemental tagging. Biosens Bioelectron. 2023;229: 115229. https://doi.org/10.1016/j.bios.2023.115229.

    Article  CAS  PubMed  Google Scholar 

  102. Kang Q, Chen BB, He M, Hu B. Simple amplifier coupled with a lanthanide labeling strategy for multiplexed and specific 1uantification of microRNAs. Anal Chem. 2022;94:12934–41. https://doi.org/10.1021/acs.analchem.2c03234.

    Article  CAS  PubMed  Google Scholar 

  103. Kang Q, He M, Chen BB, Hu B. Highly integrated and one-step triggered cascade DNA walker based on entropy-driven catalytic and DNAzyme amplification. Sensors Actuators B Chemical. 2021;345: 130370. https://doi.org/10.1016/j.snb.2021.130370.

    Article  CAS  Google Scholar 

  104. Yurke B, Turberfield AJ, Mills AP, Simmel FC, Neumann JL. A DNA-fuelled molecular machine made of DNA. Nature. 2000;406:605–8. https://doi.org/10.1038/35020524.

    Article  CAS  PubMed  Google Scholar 

  105. Gu HZ, Chao J, Xiao SJ, Seeman NC. A proximity-based programmable DNA nanoscale assembly line. Nature. 2010;465:202–5. https://doi.org/10.1038/nature09026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Wang ZG, Elbaz J, Willner I. DNA machines: bipedal walker and stepper. Nano Lett. 2011;11:304–9. https://doi.org/10.1021/nl104088s.

    Article  CAS  PubMed  Google Scholar 

  107. Peng H, Li XF, Zhang H, Le XC. A microRNA-initiated DNAzyme motor operating in living cells. Nat Commun. 2017;8:14378. https://doi.org/10.1038/ncomms14378.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Zhang H, Lai M, Zuehlke A, Peng H, Li XF, Le XC. Binding-induced DNA nanomachines triggered by proteins and nucleic acids. Angew Chem Int Ed. 2015;54:14326–30. https://doi.org/10.1002/anie.201506312.

    Article  CAS  Google Scholar 

  109. Deng W, Xu JY, Peng H, Huang CZ, Le XC, Zhang H. DNAzyme motor systems and logic gates facilitated by toehold exchange translators. Biosen Bioelectron. 2022;217:114704. https://doi.org/10.1016/j.bios.2022.114704.

    Article  CAS  Google Scholar 

  110. Tao J, Zhang H, Weinfeld M, Le XC. Development of a DNAzyme walker for the detection of APE1 in living cancer cells. Anal Chem. 2023;95:14990–7. https://doi.org/10.1021/acs.analchem.3c02574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Yuan A, Xiao H, Yang F, Hao H, Wang X, Li J, Jin M, Zhao Q, Sha R, Deng Z, Peng H. DNA walker for signal amplification in living cells. TrAC Trends Anal Chem. 2023;158: 116870. https://doi.org/10.1016/j.trac.2022.116870.

    Article  CAS  Google Scholar 

  112. Gootenberg JS, Abudayyeh OO, Lee JW, Essletzbichler P, Dy AJ, Joung J, Verdine V, Donghia N, Daringer NM, Freije CA, Myhrvold C, Bhattacharyya RP, Livny J, Regev A, Koonin EV, Hung DT, Sabeti PC, Collins JJ, Zhang F. Nucleic acid detection with CRISPR-Cas13a/C2c2. Science. 2017;356:438–42. https://doi.org/10.1126/science.aam9321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Feng W, Newbigging AM, Tao J, Cao Y, Peng H, Le C, Wu J, Li J, Pang B, Tyrrell DL, Zhang H, Le XC. CRISPR technology incorporating amplification strategies: molecular assays for nucleic acids, proteins, and small molecules. Chem Sci. 2021;12:4683–98. https://doi.org/10.1039/D0SC06973F.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Feng W, Zhang H, Le XC. Signal amplification by the trans-cleavage activity of CRISPR-Cas systems: kinetics and performance. Anal Chem. 2023;95:206–17. https://doi.org/10.1021/acs.analchem.2c04555.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was partially supported by the National Key Research and Development Program of China (2022YFF0710200), the National Natural Science Foundation of China (22074127, 22193053), the Science and Technology Projects of Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) (HRTP-[2022]-13), and the Natural Sciences and Engineering Research Council of Canada (RGPIN-2018–06913).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaowen Yan or X. Chris Le.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published in the topical collection Elemental Mass Spectrometry for Bioanalysis with guest editors Jörg Bettmer, Mario Corte-Rodríguez, and Márcia Foster Mesko.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, J., Yan, X. & Chris Le, X. Label-free detection of biomolecules using inductively coupled plasma mass spectrometry (ICP-MS). Anal Bioanal Chem 416, 2625–2640 (2024). https://doi.org/10.1007/s00216-023-05106-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-023-05106-7

Keywords

Navigation