Skip to main content
Log in

Recent advances in entirely hand-held ionization sources for mass spectrometry

  • Trends
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Ambient ionization mass spectrometry (AIMS) has been developing explosively since its first debut. The ionization process was hence able to be achieved under atmospheric pressure, facilitating on-site field analysis in a variety of areas, such as clinical diagnosis, metabolic phenotyping, and surface analysis. As part of the ambitious goal of making MS a general device that can be used in everyday life, lots of efforts have been paid to miniaturize the ionization source. This review discusses avant-garde sources that could be entirely hand-held without any accessories. The structure and applications of the devices are described in detail as well. They could be expediently used in real-time and on-site analysis, presenting a great future potential for the routinizing of MS.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AIMS:

Ambient ionization mass spectrometry

APCI:

Atmosphere pressure chemical ionization

CBS:

Coated blade spray

CFI:

Carbon fiber ionization

CI:

Chemical ionization

DAPCI:

Desorption atmospheric pressure chemical ionization

DAPI:

Discontinuous atmospheric pressure interface

DART:

Direct analysis in real time

DESI:

Desorption electrospray ionization

ESI:

Electron spray ionization

EI:

Electron ionization

HV:

High voltage

LC-MS:

Liquid chromatograph-mass spectrometry

LTP:

Low-temperature plasma

MALDI:

Matrix-assisted laser desorption/ionization

MS:

Mass spectrometry

MSP:

MasSpec Pointer

PIRL:

Picosecond infrared laser

PSI:

Paper spray ionization

REIMS:

Rapid evaporative ionization mass spectrometry

VSSI:

Vibrating sharp-edge spray ionization

References

  1. Dempster AJ. A new method of positive ray analysis. Phys Rev. 1918;11(4):316–25.

    Article  CAS  Google Scholar 

  2. Munson MSB, Field FH. Chemical ionization mass spectrometry. I. General Introduction. J Am Chem Soc. 1966;88:2621–30.

  3. Horning EC, Carroll DI, Dzidic I, Haegele KD, Horning MG, Stillwell RN. Atmospheric pressure ionization (API) mass spectrometry. Solvent-mediated ionization of samples introduced in solution and in a liquid chromatograph effluent stream. J Chromatogr Sci. 1974;12(11):725–9.

  4. Horning EC, Carroll DI, Dzidic I, Haegele KD, Horning MG, Stillwell RN. Liquid chromatograph—mass spectrometer—computer analytical systems: a continuous-flow system based on atmospheric pressure ionization mass spectrometry. J Chromatogr A. 1974;99:13–21.

    Article  CAS  Google Scholar 

  5. Carroll DI, Dzidic I, Stillwell RN, Haegele KD, Horning EC. Atmospheric pressure ionization mass spectrometry. Corona discharge ion source for use in a liquid chromatograph-mass spectrometer-computer analytical system. Anal Chem. 1975;47(14):2369–73.

  6. Tanaka K, Waki H, Ido Y, Akita S, Yoshida Y, Yoshida T, et al. Protein and polymer analyses up to m/z 100 000 by laser ionization time-of-flight mass spectrometry. Rapid Commun Mass Sp. 1988;2(8):151–3.

    Article  CAS  Google Scholar 

  7. Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM. Electrospray ionization for mass spectrometry of large biomolecules. Science. 1989;246(4926):64–71.

    Article  CAS  PubMed  Google Scholar 

  8. Takáts Z, Wiseman JM, Gologan B, Cooks RG. Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science. 2004;306(5695):471–3.

    Article  PubMed  Google Scholar 

  9. Cody RB, Laramée JA, Durst HD. Versatile new ion source for the analysis of materials in open air under ambient conditions. Anal Chem. 2005;77(8):2297–302.

    Article  CAS  PubMed  Google Scholar 

  10. Cooks RG, Ouyang Z, Takats Z, Wiseman JM. Ambient mass spectrometry. Science. 2006;311(5767):1566–70.

    Article  CAS  PubMed  Google Scholar 

  11. Zhai Y, Fu X, Xu W. Miniature mass spectrometers and their potential for clinical point-of-care analysis. Mass Spectrom Rev. (2023); 1–20. https://doi.org/10.1002/mas.21867

  12. Li Y, Chen J, Meng L, He L, Liu H, Xiong C, et al. Pocket-size “MasSpec Pointer” for ambient ionization mass spectrometry. Anal Chem. 2021;93(39):13326–33.

    Article  CAS  PubMed  Google Scholar 

  13. Javanshad R, Venter AR. Ambient ionization mass spectrometry: real-time, proximal sample processing and ionization. Anal Methods. 2017;9(34):4896–907.

    Article  Google Scholar 

  14. Feider CL, Krieger A, DeHoog RJ, Eberlin LS. Ambient ionization mass spectrometry: recent developments and applications. Anal Chem. 2019;91(7):4266–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Alberici RM, Simas RC, Sanvido GB, Romão W, Lalli PM, Benassi M, et al. Ambient mass spectrometry: bringing MS into the “real world.” Anal Bioanal Chem. 2010;398(1):265–94.

    Article  CAS  PubMed  Google Scholar 

  16. Guo X-Y, Huang X-M, Zhai J-F, Bai H, Li X-X, Ma X-X, et al. Research advances in ambient ionization and miniature mass spectrometry. Chinese J Anal Chem. 2019;47(3):335–46.

    Article  CAS  Google Scholar 

  17. Yue H, He F, Zhao Z, Duan Y. Plasma-based ambient mass spectrometry: Recent progress and applications. Mass Spectrom Rev. 2023;42(1):95–130.

    Article  CAS  PubMed  Google Scholar 

  18. Schäfer K-C, Dénes J, Albrecht K, Szaniszló T, Balog J, Skoumal R, et al. In vivo, in situ tissue analysis using rapid evaporative ionization mass spectrometry. Angew Chem Int Ed Engl. 2009;48(44):8240–2.

    Article  PubMed  Google Scholar 

  19. Balog J, Szaniszlo T, Schaefer K-C, Denes J, Lopata A, Godorhazy L, et al. Identification of biological tissues by rapid evaporative ionization mass spectrometry. Anal Chem. 2010;82(17):7343–50.

    Article  CAS  PubMed  Google Scholar 

  20. Fatou B, Saudemont P, Leblanc E, Vinatier D, Mesdag V, Wisztorski M, et al. In vivo real-time mass spectrometry for guided surgery application. Sci Rep. 2016;6(1):25919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fatou B, Saudemont P, Duhamel M, Ziskind M, Focsa C, Salzet M, et al. Real time and in vivo pharmaceutical and environmental studies with SpiderMass instrument. J Biotechnol. 2018;281:61–6.

    Article  CAS  PubMed  Google Scholar 

  22. Ogrinc N, Saudemont P, Balog J, Robin Y-M, Gimeno J-P, Pascal Q, et al. Water-assisted laser desorption/ionization mass spectrometry for minimally invasive in vivo and real-time surface analysis using SpiderMass. Nat Protoc. 2019;14(11):3162–82.

    Article  CAS  PubMed  Google Scholar 

  23. Amini-Nik S, Kraemer D, Cowan ML, Gunaratne K, Nadesan P, Alman BA, et al. Ultrafast mid-IR laser scalpel: protein signals of the fundamental limits to minimally invasive surgery. PLoS ONE. 2010;5(9): e13053.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Jowett N, Wöllmer W, Mlynarek AM, Wiseman P, Segal B, Franjic K, et al. Heat generation during ablation of porcine skin with erbium:YAG laser vs a novel picosecond infrared laser. JAMA Otolaryngol Head Neck Surg. 2013;139(8):828–33.

    Article  PubMed  Google Scholar 

  25. Franjic K, Cowan ML, Kraemer D, Miller RJD. Laser selective cutting of biological tissues by impulsive heat deposition through ultrafast vibrational excitations. Opt Express. 2009;17(25):22937–59.

    Article  CAS  PubMed  Google Scholar 

  26. Zhang J, Rector J, Lin JQ, Young JH, Sans M, Katta N, et al. Nondestructive tissue analysis for ex vivo and in vivo cancer diagnosis using a handheld mass spectrometry system. Sci Transl Med. 2017;9(406):eaan3968.

  27. Huang Y-Q, You J-Q, Yuan B-F, Feng Y-Q. Sample preparation and direct electrospray ionization on a tip column for rapid mass spectrometry analysis of complex samples. Analyst. 2012;137(19):4593–7.

    Article  CAS  PubMed  Google Scholar 

  28. Walton CL, Kertesz V, Cahill JF. Design and Evaluation of a tethered, open port sampling interface for liquid extraction-mass spectrometry chemical analysis. J Am Soc Mass Spectr. 2021;32(1):198–205.

    Article  CAS  Google Scholar 

  29. Liu S, Xu Q, Li Y, Xu W, Zhai Y. Coupling handheld liquid microjunction-surface sampling probe (hLMJ-SSP) to the miniature mass spectrometer for automated and in-situ surface analysis. Talanta. 2022;242: 123090.

    Article  CAS  PubMed  Google Scholar 

  30. Wu M-X, Wang H-Y, Zhang J-T, Guo Y-L. Multifunctional carbon fiber ionization mass spectrometry. Anal Chem. 2016;88(19):9547–53.

    Article  CAS  PubMed  Google Scholar 

  31. Zhang Q, Liu X, Li Z, Su Y, Guo Y. Rapid quantitative analysis with low matrix effects of capsaicin in various samples by thermal desorption carbon fiber ionization mass spectrometry. Anal Chim Acta. 2019;1048:115–22.

    Article  CAS  PubMed  Google Scholar 

  32. Cao Y-Q, Zhang L, Zhang J, Guo Y-L. Single-cell on-probe derivatization–noncontact nanocarbon fiber ionization: unraveling cellular heterogeneity of fatty alcohol and sterol metabolites. Anal Chem. 2020;92(12):8378–85.

    Article  CAS  PubMed  Google Scholar 

  33. Wu M-L, Chen T-Y, Chen Y-C, Chen Y-C. Carbon fiber ionization mass spectrometry for the analysis of analytes in vapor, liquid, and solid phases. Anal Chem. 2017;89(24):13458–65.

    Article  CAS  PubMed  Google Scholar 

  34. Li X, Attanayake K, Valentine SJ, Li P. Vibrating sharp-edge spray ionization (VSSI) for voltage-free direct analysis of samples using mass spectrometry. Rapid Commun Mass Sp. 2018;35(S1): e8232.

    Article  Google Scholar 

  35. Ranganathan N, Li C, Suder T, Karanji AK, Li X, He Z, et al. Capillary vibrating sharp-edge spray ionization (cVSSI) for voltage-free liquid chromatography-mass spectrometry. J Am Soc Mass Spectr. 2019;30(5):824–31.

    Article  CAS  Google Scholar 

  36. Meisenbichler C, Kluibenschedl F, Müller T. A 3-in-1 hand-held ambient mass spectrometry interface for identification and 2D localization of chemicals on surfaces. Anal Chem. 2020;92(21):14314–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wiley JS, Shelley JT, Cooks RG. Handheld low-temperature plasma probe for portable “point-and-shoot” ambient ionization mass spectrometry. Anal Chem. 2013;85(14):6545–52.

    Article  CAS  PubMed  Google Scholar 

  38. Hendricks PI, Dalgleish JK, Shelley JT, Kirleis MA, McNicholas MT, Li L, et al. Autonomous in situ analysis and real-time chemical detection using a backpack miniature mass spectrometer: concept, instrumentation development, and performance. Anal Chem. 2014;86(6):2900–8.

    Article  CAS  PubMed  Google Scholar 

  39. Gao L, Li G, Nie Z, Duncan J, Ouyang Z, Cooks RG. Characterization of a discontinuous atmospheric pressure interface. Multiple ion introduction pulses for improved performance. Int J Mass Spectrom. 2009;283(1):30–4.

  40. Jjunju FPM, Maher S, Li A, Syed SU, Smith B, Heeren RMA, et al. Hand-held portable desorption atmospheric pressure chemical ionization ion source for in situ analysis of nitroaromatic explosives. Anal Chem. 2015;87(19):10047–55.

    Article  CAS  PubMed  Google Scholar 

  41. Jager J, Gerssen A, Pawliszyn J, Sterk SS, Nielen MWF, Blokland MH. USB-powered coated blade spray ion source for on-site testing using transportable mass spectrometry. J Am Soc Mass Spectr. 2020;31(11):2243–9.

    Article  CAS  Google Scholar 

  42. Li Y, Jia K, Pan Y, Han J, Chen J, Wang Y, et al. Pocket-size wireless nanoelectrospray ionization mass spectrometry for metabolic analysis of salty biofluids and single cells. Anal Chem. 2023;95(10):4612–8.

    Article  CAS  PubMed  Google Scholar 

  43. Li A, Hollerbach A, Luo Q, Cooks RG. On-demand ambient ionization of picoliter samples using charge pulses. Angew Chem Int Ed Engl. 2015;127(23):6997–9.

    Article  Google Scholar 

  44. Li YZ, Meng LW, Li ZZ, Wang YR, Wang X, Liu HH, et al. Hand-powered ionization methods for the mass spectrometric detection of small molecules. Int J Mass Spectrom. 2021;470: 116716.

    Article  CAS  Google Scholar 

  45. Li L, Chen T-C, Ren Y, Hendricks PI, Cooks RG, Ouyang Z. Mini 12, miniature mass spectrometer for clinical and other applications—introduction and characterization. Anal Chem. 2014;86(6):2909–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Narayanan R, Sarkar D, Cooks RG, Pradeep T. Molecular ionization from carbon nanotube paper. Angew Chem Int Ed Engl. 2014;53(23):5936–40.

    Article  CAS  PubMed  Google Scholar 

  47. Narayanan R, Sarkar D, Som A, Wleklinski M, Cooks RG, Pradeep T. Anisotropic molecular ionization at 1 V from tellurium nanowires (Te NWs). Anal Chem. 2015;87(21):10792–8.

    Article  CAS  PubMed  Google Scholar 

  48. Wleklinski M, Li Y, Bag S, Sarkar D, Narayanan R, Pradeep T, et al. Zero volt paper spray ionization and its mechanism. Anal Chem. 2015;87(13):6786–93.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by grants from the National Natural Science Foundation of China (Grant Nos. 2162S504, 21827807, 21790390/21790392), the Natural Science Foundation of Ningxia Province (2023AAC03013), Ningxia University, and Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Nie Zongxiu, Li Yuze. Writing—original draft preparation: Fan Jinghan. Writing—review and editing: Fan Jinghan, Li Yuze, Ma Wenbo, Yu Yile. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Yuze Li or Zongxiu Nie.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published in the topical collection Advances in (Bio-)Analytical Chemistry: Reviews and Trends Collection 2024.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, J., Ma, W., Yu, Y. et al. Recent advances in entirely hand-held ionization sources for mass spectrometry. Anal Bioanal Chem 416, 2057–2063 (2024). https://doi.org/10.1007/s00216-023-05022-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-023-05022-w

Keywords

Navigation