Skip to main content

Advertisement

Log in

The role of sustainable materials in sample preparation

  • Trends
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Sample preparation is a constantly evolving step in the measurement process with a positive effect on its performance. Its evolution has been marked by an underlying environmental commitment, with simplification, miniaturization, and automation being three of its driving forces. This trends article deepens how the sample preparation can go sustainable through the efficient design of new sorptive materials, either liquid or solid. This objective can be achieved by using natural and/or biodegradable materials as precursors of the functional sorptive phases and by designing materials that simplify the procedures (thus reducing the energy or resources required). Although environmental performance is a crucial aspect of a new material, its applicability is what really defines its incorporation into the sample preparation toolbox. For this reason, their characteristics and more relevant applications will be briefly presented to conclude with the tendency of their use in the very near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Azzouz A, Kailasa SK, LeeRascón SSJA, Ballesteros E, Zhang M, Kim K-H. Review of nanomaterials as sorbents in solid-phase extraction for environmental samples. TrAC, Trends Anal Chem. 2018;108:347–69. https://doi.org/10.1016/j.trac.2018.08.009.

    Article  CAS  Google Scholar 

  2. Aguilera-Herrador E, Lucena R, Cárdenas S, Valcárcel M. The roles of ionic liquids in sorptive microextraction techniques. TrAC, Trends Anal Chem. 2010;29:602–16. https://doi.org/10.1016/j.trac.2009.11.009.

    Article  CAS  Google Scholar 

  3. Kannouma RE, Hammad MA, Kamal AH, Mansour FR. Miniaturization of liquid-liquid extraction; the barriers and the enablers. Microchem J. 2022;182: 107863. https://doi.org/10.1016/j.microc.2022.107863.

    Article  CAS  Google Scholar 

  4. Carasek E, Bernardi G, Morelli D, Merib J. Sustainable green solvents for microextraction techniques: recent developments and applications. J Chromatogr A. 2021;1640: 461944. https://doi.org/10.1016/j.chroma.2021.461944.

    Article  CAS  PubMed  Google Scholar 

  5. Abbott AP, Capper G, Davies DL, Rasheed RK, Tambyrajah V. Novel solvent properties of choline chloride/urea mixtures. Electronic supplementary information (ESI) available: spectroscopic data. 2003. See http://www.rsc.org/suppdata/cc/b2/b210714g/. Chem Commun. 2003; 1; 70–71. https://doi.org/10.1039/b210714g

  6. Prabhune A, Dey R. Green and sustainable solvents of the future: deep eutectic solvents. J Mol Liq. 2023;379: 121676. https://doi.org/10.1016/j.molliq.2023.121676.

    Article  CAS  Google Scholar 

  7. Choi YH, Van Spronsen J, Dai Y, Verberne M, Hollmann F, Arends IWCE, Witkamp G-J, Verpoorte R. Are natural deep eutectic solvents the missing link in understanding cellular metabolism and physiology? Plant Physiol. 2011;156:1701–5. https://doi.org/10.1104/pp.111.178426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Andruch V, Kalyniukova A, Płotka-Wasylka J, Jatkowska N, Snigur D, Zaruba S, Płatkiewicz J, Zgoła-Grześkowiak A, Werner J. Application of deep eutectic solvents in analytical sample pretreatment (update 2017–2022). Part A: Liquid phase microextraction. Microchemical Journal. 2023;189:108509. https://doi.org/10.1016/j.microc.2023.108509

  9. Werner J, Zgoła-Grześkowiak A, Płatkiewicz J, Płotka-Wasylka J, Jatkowska N, Kalyniukova A, Zaruba S, Andruch V. Deep eutectic solvents in analytical sample preconcentration Part B: solid-phase (micro)extraction. Microchem J. 2023;191: 108898. https://doi.org/10.1016/j.microc.2023.108898.

    Article  CAS  Google Scholar 

  10. Ballesteros-Gómez A, Rubio S, Pérez-Bendito D. Potential of supramolecular solvents for the extraction of contaminants in liquid foods. J Chromatogr A. 2009;1216:530–9. https://doi.org/10.1016/j.chroma.2008.06.029.

    Article  CAS  PubMed  Google Scholar 

  11. Rubio S. Twenty years of supramolecular solvents in sample preparation for chromatography: achievements and challenges ahead. Anal Bioanal Chem. 2020;412:6037–58. https://doi.org/10.1007/s00216-020-02559-y.

    Article  CAS  PubMed  Google Scholar 

  12. Caballero-Casero N, Rubio S. Identification of bisphenols and derivatives in greenhouse dust as a potential source for human occupational exposure. Anal Bioanal Chem. 2022;414:5397–409. https://doi.org/10.1007/s00216-021-03863-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Romera-García E, Ballesteros-Gómez A, Rubio S. Supramolecular biosolvents made up of self-assembled rhamnolipids: synthesis and characterization. Green Chem. 2020;22:6115–26. https://doi.org/10.1039/D0GC02078H.

    Article  Google Scholar 

  14. Jesús Dueñas-Mas M, Ballesteros-Gómez A, Rubio S. Characterization of a new sustainable supramolecular solvent and application to the determination of oxy-PAHs in meat, seafood and fish tissues. Food Chem. 2023;405: 134731. https://doi.org/10.1016/j.foodchem.2022.134731.

    Article  CAS  PubMed  Google Scholar 

  15. Cai Z-H, Wang J-D, Liu L, Ruan L-D, Gu Q, Yan X-Y, Fu L-N, Zhao P-Q, Zhang S, Fu Y-J. A green and designable natural deep eutectic solvent-based supramolecular solvents system: efficient extraction and enrichment for phytochemicals. Chem Eng J. 2023;457: 141333. https://doi.org/10.1016/j.cej.2023.141333.

    Article  CAS  Google Scholar 

  16. Jalili V, Zendehdel R, Barkhordari A. Supramolecular solvent-based microextraction techniques for sampling and preconcentration of heavy metals: a review. Rev Anal Chem. 2021;40:93–107. https://doi.org/10.1515/revac-2021-0130.

    Article  CAS  Google Scholar 

  17. Jessop PG, Phan L, Carrier A, Robinson S, Dürr CJ, Harjani JR. A solvent having switchable hydrophilicity. Green Chem. 2010;12:809. https://doi.org/10.1039/b926885e.

    Article  CAS  Google Scholar 

  18. Jessop PG, Heldebrant DJ, Li X, Eckert CA, Liotta CL. Reversible nonpolar-to-polar solvent. Nature. 2005;436:1102–1102. https://doi.org/10.1038/4361102a.

    Article  CAS  PubMed  Google Scholar 

  19. Lasarte-Aragonés G, Lucena R, Cárdenas S, Valcárcel M. Use of switchable solvents in the microextraction context. Talanta. 2015;131:645–9. https://doi.org/10.1016/j.talanta.2014.08.031.

    Article  CAS  PubMed  Google Scholar 

  20. Bazel Y, Rečlo M, Chubirka Y. Switchable hydrophilicity solvents in analytical chemistry. Five years of achievements Microchemical Journal. 2020;157: 105115. https://doi.org/10.1016/j.microc.2020.105115.

    Article  CAS  Google Scholar 

  21. Shishov A, Sviridov I, Timofeeva I, Chibisova N, Moskvin L, Bulatov A. An effervescence tablet-assisted switchable solvent-based microextraction: on-site preconcentration of steroid hormones in water samples followed by HPLC-UV determination. J Mol Liq. 2017;247:246–53. https://doi.org/10.1016/j.molliq.2017.09.120.

    Article  CAS  Google Scholar 

  22. Pawliszyn J. Evolution of solid phase microextraction technology. Cambridge: Royal Society of Chemistry; 2023.

  23. Płotka-Wasylka J, Jatkowska N, Paszkiewicz M, Caban M, Fares MY, Dogan A, Garrigues S, Manousi N, Kalogiouri N, Nowak PM, Samanidou VF, De La Guardia M. Miniaturized solid phase extraction techniques for different kind of pollutants analysis: state of the art and future perspectives – PART 1. TrAC, Trends Anal Chem. 2023;162: 117034. https://doi.org/10.1016/j.trac.2023.117034.

    Article  CAS  Google Scholar 

  24. Płotka-Wasylka J, Jatkowska N, Paszkiewicz M, Caban M, Fares MY, Dogan A, Garrigues S, Manousi N, Kalogiouri N, Nowak PM, Samanidou VF, De La Guardia M. Miniaturized solid phase extraction techniques for different kind of pollutants analysis: state of the art and future perspectives – part 2. TrAC, Trends Anal Chem. 2023;165: 117140. https://doi.org/10.1016/j.trac.2023.117140.

    Article  CAS  Google Scholar 

  25. Zhou W, Wieczorek MN, Javanmardi H, Pawliszyn J. Direct solid-phase microextraction-mass spectrometry facilitates rapid analysis and green analytical chemistry. TrAC, Trends Anal Chem. 2023;166: 117167. https://doi.org/10.1016/j.trac.2023.117167.

    Article  CAS  Google Scholar 

  26. Mafra G, García-Valverde M, Millán-Santiago J, Carasek E, Lucena R, Cárdenas S. Returning to nature for the design of sorptive phases in solid-phase microextraction. Separations. 2019;7:2. https://doi.org/10.3390/separations7010002.

    Article  CAS  Google Scholar 

  27. Godage NH, Gionfriddo E. Use of natural sorbents as alternative and green extractive materials: a critical review. Anal Chim Acta. 2020;1125:187–200. https://doi.org/10.1016/j.aca.2020.05.045.

    Article  CAS  PubMed  Google Scholar 

  28. Ma X, Wang L, He Q, Sun Q, Yin D, Zhang Y. A review on recent developments and applications of green sorbents-based solid phase extraction techniques. Advances in Sample Preparation. 2023;6: 100065. https://doi.org/10.1016/j.sampre.2023.100065.

    Article  Google Scholar 

  29. Díaz-Liñán MC, Lucena R, Cárdenas S, López-Lorente AI. Unmodified cellulose filter paper, a sustainable and affordable sorbent for the isolation of biogenic amines from beer samples. J Chromatogr A. 2021;1651: 462297. https://doi.org/10.1016/j.chroma.2021.462297.

    Article  CAS  PubMed  Google Scholar 

  30. Allgaier-Díaz DW, Trujillo-Rodríguez MJ, Ayala JH, Díaz Díaz D, Pino V. Unmodified biopolymers as sustainable microextraction materials for the environmental monitoring of polycyclic aromatic hydrocarbons and personal care products. Microchem J. 2023;191: 108873. https://doi.org/10.1016/j.microc.2023.108873.

    Article  CAS  Google Scholar 

  31. González-Bermúdez M, López-Lorente ÁI, Lucena R, Cárdenas S. Paper-based sorptive phases for a sustainable sample preparation. Advances in Sample Preparation. 2023;5: 100051. https://doi.org/10.1016/j.sampre.2023.100051.

    Article  Google Scholar 

  32. Benedé JL, Chisvert A, Lucena R, Cárdenas S. Synergistic combination of polyamide-coated paper-based sorptive phase for the extraction of antibiotics in saliva. Anal Chim Acta. 2021;1164: 338512. https://doi.org/10.1016/j.aca.2021.338512.

    Article  CAS  PubMed  Google Scholar 

  33. Benedé JL, Chisvert A, Lucena R, Cárdenas S. A paper-based polystyrene/nylon Janus platform for the microextraction of UV filters in water samples as proof-of-concept. Microchim Acta. 2021;188:391. https://doi.org/10.1007/s00604-021-05047-x.

    Article  CAS  Google Scholar 

  34. Díaz-Liñán MC, García-Valverde MT, Lucena R, Cárdenas S, López-Lorente AI. Paper-based sorptive phases for microextraction and sensing. Anal Methods. 2020;12:3074–91. https://doi.org/10.1039/D0AY00702A.

    Article  PubMed  Google Scholar 

  35. Hu B, Yao Z-P. Electrospray ionization mass spectrometry with wooden tips: a review. Anal Chim Acta. 2022;1209: 339136. https://doi.org/10.1016/j.aca.2021.339136.

    Article  CAS  PubMed  Google Scholar 

  36. Vejar-Vivar C, Millán-Santiago J, Mardones C, Lucena R, Cárdenas S. Polydopamine inner wall-coated hypodermic needle as microextraction device and electrospray emitter for the direct analysis of illicit drugs in oral fluid by ambient mass spectrometry. Talanta. 2022;249: 123693. https://doi.org/10.1016/j.talanta.2022.123693.

    Article  CAS  PubMed  Google Scholar 

  37. Millán-Santiago J, Lucena R, Cárdenas S. Nylon 6-cellulose composite hosted in a hypodermic needle: biofluid extraction and analysis by ambient mass spectrometry in a single device. Journal of Pharmaceutical Analysis. 2023;S2095177923001272. https://doi.org/10.1016/j.jpha.2023.06.015

  38. Srivastava A, Mishra A. Food waste valorization for handling environmental problems: a review. Environmental Sustainability. 2022;5:401–21. https://doi.org/10.1007/s42398-022-00245-6.

    Article  CAS  Google Scholar 

  39. Frezzini MA, Massimi L, Astolfi ML, Canepari S, Giuliano A. Food waste materials as low-cost adsorbents for the removal of volatile organic compounds from wastewater. Materials. 2019;12:4242. https://doi.org/10.3390/ma12244242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Vassalini I, Litvinava M, Alessandri I. All food waste-based membranes for chromium(VI) removal. Environmental Sustainability. 2021;4:429–35. https://doi.org/10.1007/s42398-020-00132-y.

    Article  CAS  Google Scholar 

  41. Cuccarese M, Brutti S, De Bonis A, Teghil R, Di Capua F, Mancini IM, Masi S, Caniani D. Sustainable adsorbent material prepared by soft alkaline activation of spent coffee grounds: characterisation and adsorption mechanism of methylene blue from aqueous solutions. Sustainability. 2023;15:2454. https://doi.org/10.3390/su15032454.

    Article  CAS  Google Scholar 

  42. Płotka-Wasylka J. A new tool for the evaluation of the analytical procedure: green analytical procedure index. Talanta. 2018;181:204–9. https://doi.org/10.1016/j.talanta.2018.01.013.

    Article  CAS  PubMed  Google Scholar 

  43. Wojnowski W, Tobiszewski M, Pena-Pereira F, Psillakis E. AGREEprep – Analytical greenness metric for sample preparation. TrAC, Trends Anal Chem. 2022;149: 116553. https://doi.org/10.1016/j.trac.2022.116553.

    Article  CAS  Google Scholar 

  44. Pena-Pereira F, Wojnowski W, Tobiszewski M. AGREE—analytical greenness metric approach and software. Anal Chem. 2020;92:10076–82. https://doi.org/10.1021/acs.analchem.0c01887.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. González-Martín R, Gutiérrez-Serpa A, Pino V, Sajid M. A tool to assess analytical sample preparation procedures: sample preparation metric of sustainability. J Chromatogr A. 2023;1707: 464291. https://doi.org/10.1016/j.chroma.2023.464291.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Financial support from PID2020-112862RB-I00 funded by MCIN/AEI/10.13039/50110 0 011033 (Feder “Una manera de hacer Europa”) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soledad Cárdenas.

Ethics declarations

Conflict of interest

Soledad Cárdenas is an editor of Analytical and Bioanalytical Chemistry but was not involved in the peer review of this paper.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published in the topical collection Advances in (Bio-)Analytical Chemistry: Reviews and Trends Collection 2024.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cárdenas, S. The role of sustainable materials in sample preparation. Anal Bioanal Chem 416, 2049–2056 (2024). https://doi.org/10.1007/s00216-023-05015-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-023-05015-9

Keywords

Navigation