Skip to main content
Log in

Nanozyme’s catalytic activity at neutral pH: reaction substrates and application in sensing

  • Critical Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Nanozymes exhibit their great potential as alternatives to natural enzymes. In addition to catalytic activity, nanozymes also need to have biologically relevant catalytic reactions at physiological pH to fit in the definition of an enzyme and to achieve efficient analytical applications. Previous reviews in the nanozyme field mainly focused on the catalytic mechanisms, activity regulation, and types of catalytic reactions. In this paper, we discuss efforts made on the substrate-dependent catalytic activity of nanozymes at neutral pH. First, the discrepant catalytic activities for different substrates are compared, where the key differences are the characteristics of substrates and the adsorption of substrates by nanozymes at different pH. We then reviewed efforts to enhance reaction activity for model chromogenic substrates and strategies to engineer nanomaterials to accelerate reaction rates for other substrates at physiological pH. Finally, we also discussed methods to achieve efficient sensing applications at neutral pH using nanozymes. We believe that the nanozyme is catching up with enzymes rapidly in terms of reaction rates and reaction conditions. Designing nanozymes with specific catalysis for efficient sensing remains a challenge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Copyright 2018, American Chemical Society. B Manganese as a catalytic mediator for photo-oxidation to achieve nanozyme-catalyzed TMB under neutral pH. Reprinted with permission from ref. [41]. Copyright 2019, American Chemical Society. C Lanthanide-boosted singlet oxygen from diverse photosensitizers along with potent photocatalytic oxidation. Reprinted with permission from ref. [42]. Copyright 2019, American Chemical Society

Fig. 3

Copyright 2019, American Chemical Society. B Schematic presentation of porous Co3O4 nanoplates with temperature- and pH-switchable peroxidase- and CAT-like activity. Reprinted with permission from ref. [56]. Copyright 2018 Royal Society of Chemistry. C In situ fabrication of nanoceria with oxidase-like activity at neutral pH. Reprinted with permission from ref. [57]. Copyright 2021 American Chemical Society

Fig. 4

Copyright 2012 Royal Society of Chemistry. B Oxidation of AR to fluorescent resorufin based on the oxidase-like activity of NiO nanoparticles was used as a fluorescent “turn-on” sensor for the detection of phosphate. Reprinted with permission from ref. [71]. Copyright 2020, American Chemical Society. C Schematic of the one-pot cascade catalysis by CuO NPs for oxidation  ascorbic acid (AA) to fluorescence terephthalic acid (TA). Reprinted with permission from ref. [72]. Copyright 2020 Elsevier B.V. All rights reserved. D Schematic diagram of the synthesis of GO-Se nanocomposites and the H2O2 removal mechanism with enhanced GPx-like properties. Reprinted with permission from ref. [73]. Copyright 2017 Royal Society of Chemistry

Fig. 5

Copyright 2020 Royal Society of Chemistry. B Demonstrate the Pt NPs as a smart probe for mercury sensing. Reprinted with permission from ref. [90]. Copyright 2014 American Chemical Society. C The proposed mechanism of the visual chemosensor for Cr6+. Reprinted with permission from ref. [87]. Copyright 2020 American Chemical Society

Fig. 6

Copyright 2020 Elsevier B.V. All rights reserved. B Nanozyme-assisted sensor of heparin based on electrostatic-induced aggregation and multicolor channel. Reprinted with permission from ref. [35]. Copyright 2021 Elsevier B.V. All rights reserved. C Schematic diagram of the biosensing of glucose based on PDDA-modified Au@Ag NRs. Reprinted with permission from ref. [48]. Copyright 2015 American Chemical Society. D Schematic illustration of Ni/Co LDHs to break the pH limitation. Reprinted with permission from ref. [97]. Redrawn 2017 Royal Society of Chemistry

Fig. 7

Copyright 2019 Elsevier B.V. All rights reserved. B Schematic diagram of the smartphone-assisted biosensing of pesticides based on AChE-MnO2@HPH. Reprinted with permission from ref. [115]. Copyright 2021 Elsevier B.V. All rights reserved. C CH-Cu nanozyme for phenolic pollutant degradation and epinephrine detection. Reprinted with permission from ref. [117]. Copyright 2019 Elsevier B.V. All rights reserved

Similar content being viewed by others

References

  1. Matés JM, Pérez-Gómez C, De Castro IN. Antioxidant enzymes and human diseases. Clin Biochem. 1999;32(8):595–603.

    PubMed  Google Scholar 

  2. Li Y, Liu J. Nanozyme’s catching up: activity, specificity, reaction conditions and reaction types. Mater Horiz. 2021;8(2):336–50.

    CAS  PubMed  Google Scholar 

  3. Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, Wang T, Feng J, Yang D, Perrett S, Yan X. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol. 2007;2(9):577–83.

    CAS  PubMed  Google Scholar 

  4. Wu J, Wang X, Wang Q, Lou Z, Li S, Zhu Y, Qin L, Wei H. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II). Chem Soc Rev. 2019;48(4):1004–76.

    CAS  PubMed  Google Scholar 

  5. Huang Y, Ren J, Qu X. Nanozymes: classification, catalytic mechanisms, activity regulation, and applications. Chem Rev. 2019;119(6):4357–412.

    CAS  PubMed  Google Scholar 

  6. Lin Y, Ren J, Qu X. Catalytically active nanomaterials: a promising candidate for artificial enzymes. Acc Chem Res. 2014;47(4):1097–105.

    CAS  PubMed  Google Scholar 

  7. Xu F, Lu Q, Huang PJ, Liu J. Nanoceria as a DNase I mimicking nanozyme. Chem Commun. 2019;55(88):13215–8.

    CAS  Google Scholar 

  8. Tian Z, Yao T, Qu C, Zhang S, Li X, Qu Y. Photolyase-like catalytic behavior of CeO2. Nano Lett. 2019;19(11):8270–7.

    CAS  PubMed  Google Scholar 

  9. Zhang J, Wu S, Ma L, Wu P, Liu J. Graphene oxide as a photocatalytic nuclease mimicking nanozyme for DNA cleavage. Nano Res. 2020;13(2):455–60.

    CAS  Google Scholar 

  10. He W, Liu Y, Yuan J, Yin J-J, Wu X, Hu X, Zhang K, Liu J, Chen C, Ji Y, Guo Y. Au@Pt nanostructures as oxidase and peroxidase mimetics for use in immunoassays. Biomaterials. 2011;32(4):1139–47.

    CAS  PubMed  Google Scholar 

  11. Asati A, Santra S, Kaittanis C, Nath S, Perez JM. Oxidase-like activity of polymer-coated cerium oxide nanoparticles. Angew Chem Int Ed. 2009;48(13):2308–12.

    CAS  Google Scholar 

  12. Song YJ, Qu KG, Zhao C, Ren JS, Qu XG. Graphene oxide: intrinsic peroxidase catalytic activity and its application to glucose detection. Adv Mater. 2010;22(19):2206–10.

    CAS  PubMed  Google Scholar 

  13. Zhang Z, Zhang X, Liu B, Liu J. Molecular imprinting on inorganic nanozymes for hundred-fold enzyme specificity. J Am Chem Soc. 2017;139(15):5412–9.

    CAS  PubMed  Google Scholar 

  14. Zhang J, Lu X, Tang D, Wu S, Hou X, Liu J, Wu P. Phosphorescent carbon dots for highly efficient oxygen photosensitization and as photo-oxidative nanozymes. ACS Appl Mater Interfaces. 2018;10(47):40808–14.

    CAS  PubMed  Google Scholar 

  15. Chang Y, Gao S, Liu M, Liu J. Designing signal-on sensors by regulating nanozyme activity. Anal Methods. 2020;12(39):4708–23.

    CAS  PubMed  Google Scholar 

  16. Li S, Zhang Y, Wang Q, Lin A, Wei H. Nanozyme-enabled analytical chemistry. Anal Chem. 2022;94(1):312–23.

    CAS  PubMed  Google Scholar 

  17. Zhang X, Yang Q, Lang Y, Jiang X, Wu P. Rationale of 3,3′,5,5′-tetramethylbenzidine as the chromogenic substrate in colorimetric analysis. Anal Chem. 2020;92(18):12400–6.

    CAS  PubMed  Google Scholar 

  18. Frey A, Meckelein B, Externest D, Schmidt MA. A stable and highly sensitive 3,3′,5,5′-tetramethylbenzidine-based substrate reagent for enzyme-linked immunosorbent assays. J Immunol Methods. 2000;233(1–2):47–56.

    CAS  PubMed  Google Scholar 

  19. Zhang X, Li X, Lang Y, Wu P. Low-cost naked-eye UVB and UVC dosimetry based on 3,3′,5,5′-tetramethylbenzidine. Anal Chem. 2022;94(10):4373–9.

    CAS  PubMed  Google Scholar 

  20. Liao J, Yu Z, Fu L, Liu J, Jia L. Enzyme-free colorimetric detection of biothiols based on the photoinduced oxidation of 3,3′,5,5′-tetramethylbenzidine. Anal Bioanal Chem. 2022;414(26):7731–40.

    CAS  PubMed  Google Scholar 

  21. Bally RW, Gribnau TCJ. Some aspects of the chromogen 3,3′,5,5′-tetramethylbenzidine as hydrogen donor in a horseradish peroxidase assay. Clin Chem Lab Med. 1989;27(10):791–6.

    CAS  Google Scholar 

  22. Asati A, Kaittanis C, Santra S, Perez JM. pH-tunable oxidase-like activity of cerium oxide nanoparticles achieving sensitive fluorigenic detection of cancer biomarkers at neutral pH. Anal Chem. 2011;83(7):2547–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang H-B, Zhang H-D, Chen Y, Huang K-J, Liu Y-M. A label-free and ultrasensitive fluorescent sensor for dopamine detection based on double-stranded DNA templated copper nanoparticles. Sens Actuators B. 2015;220:146–53.

    CAS  Google Scholar 

  24. Wang H-B, Li Y, Dong G-L, Gan T, Liu Y-M. A convenient and label-free colorimetric assay for dopamine detection based on the inhibition of the Cu(ii)-catalyzed oxidation of a 3,3′,5,5′-tetramethylbenzidine–H2O2 system. New J Chem. 2017;41(23):14364–9.

    CAS  Google Scholar 

  25. Wang H-B, Li Y, Bai H-Y, Liu Y-M. Fluorescent determination of dopamine using polythymine-templated copper nanoclusters. Anal Lett. 2018;51(18):2868–77.

    CAS  Google Scholar 

  26. Zhao Y, Zheng Y, Kong R, Xia L, Qu F. Ultrasensitive electrochemical immunosensor based on horseradish peroxidase (HRP)-loaded silica-poly(acrylic acid) brushes for protein biomarker detection. Biosens Bioelectron. 2016;75:383–8.

    CAS  PubMed  Google Scholar 

  27. Henriquez C, Aliaga C, Lissi E. Formation and decay of the ABTS derived radical cation: a comparison of different preparation procedures. Int J Chem Kinet. 2002;34(12):659–65.

    CAS  Google Scholar 

  28. Josephy PD. Oxidative activation of benzidine and its derivatives by peroxidases. Environ Health Perspect. 1985;64:171–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Vallabani NVS, Karakoti AS, Singh S. ATP-mediated intrinsic peroxidase-like activity of Fe3O4-based nanozyme: One step detection of blood glucose at physiological pH. Colloids Surf B. 2017;153:52–60.

    CAS  Google Scholar 

  30. Vallabani NVS, Singh S, Karakoti AS. Investigating the role of ATP towards amplified peroxidase activity of iron oxide nanoparticles in different biologically relevant buffers. Appl Surf Sci. 2019;492:337–48.

    CAS  Google Scholar 

  31. Vallabani NVS, Vinu A, Singh S, Karakoti A. Tuning the ATP-triggered pro-oxidant activity of iron oxide-based nanozyme towards an efficient antibacterial strategy. J Colloid Interface Sci. 2020;567:154–64.

    CAS  PubMed  Google Scholar 

  32. Chishti B, Fouad H, Seo HK, Alothman OY, Ansari ZA, Ansari SG. ATP fosters the tuning of nanostructured CeO2 peroxidase-like activity for promising antibacterial performance. New J Chem. 2020;44(26):11291–303.

    CAS  Google Scholar 

  33. Chishti B, Ansari ZA, Fouad H, Alothman OY, Hashem M, Ansari SG. Picomolar-level melamine detection via ATP regulated CeO2 nanorods tunable peroxidase-like nanozyme-activity-based colorimetric sensor: logic gate implementation and real sample analysis. New J Chem. 2021;11(2):178.

    CAS  Google Scholar 

  34. Hu L, Liao H, Feng L, Wang M, Fu W. Accelerating the peroxidase-like activity of gold nanoclusters at neutral pH for colorimetric detection of heparin and heparinase activity. Anal Chem. 2018;90(10):6247–52.

    CAS  PubMed  Google Scholar 

  35. Niu X, Wang M, Zhu H, Liu P, Pan J, Liu B. Nanozyme catalysis-assisted ratiometric multicolor sensing of heparin based on target-specific electrostatic-induced aggregation. Talanta. 2022;238(Pt 1):123003.

    CAS  PubMed  Google Scholar 

  36. Chen Q, Liu Y, Liu J, Liu J. Liposome-boosted peroxidase-mimicking nanozymes breaking the pH limit. Chemistry. 2020;26(70):16659–65.

    CAS  PubMed  Google Scholar 

  37. Niu X, Xu X, Li X, Pan J, Qiu F, Zhao H, Lan M. Surface charge engineering of nanosized CuS via acidic amino acid modification enables high peroxidase-mimicking activity at neutral pH for one-pot detection of glucose. Chem Commun. 2018;54(95):13443–6.

    CAS  Google Scholar 

  38. Zhang Y, Chen L, Sun R, Lv R, Du T, Li Y, Zhang X, Sheng R, Qi Y. Multienzymatic antioxidant activity of manganese-based nanoparticles for protection against oxidative cell damage. ACS Biomater Sci Eng. 2022;8(2):638–48.

    CAS  PubMed  Google Scholar 

  39. Chen J, Zhang S, Chen X, Wang L, Yang W. A Self-assembled Fmoc-diphenylalanine hydrogel-encapsulated Pt nanozyme as oxidase- and peroxidase-like breaking ph limitation for potential antimicrobial application. Chemistry. 2022;28(26):e202104247.

    CAS  PubMed  Google Scholar 

  40. Yin X, Liu P, Xu X, Pan J, Li X, Niu X. Breaking the pH limitation of peroxidase-like CoFe2O4 nanozyme via vitriolization for one-step glucose detection at physiological pH. Sens Actuators B. 2021;328:129033.

    CAS  Google Scholar 

  41. Zhang J, Wu S, Lu X, Wu P, Liu J. Manganese as a catalytic mediator for photo-oxidation and breaking the pH limitation of nanozymes. Nano Lett. 2019;19(5):3214–20.

    CAS  PubMed  Google Scholar 

  42. Zhang J, Wu S, Lu X, Wu P, Liu J. Lanthanide-boosted singlet oxygen from diverse photosensitizers along with potent photocatalytic oxidation. ACS Nano. 2019;13(12):14152–61.

    CAS  PubMed  Google Scholar 

  43. An P, Xue X, Rao H, Wang J, Gao M, Wang H, Luo M, Liu X, Xue Z, Lu X. Gold nanozyme as an excellent co-catalyst for enhancing the performance of a colorimetric and photothermal bioassay. Anal Chim Acta. 2020;1125:114–27.

    CAS  PubMed  Google Scholar 

  44. Yang D, Li Q, Tammina SK, Gao Z, Yang Y. Cu-CDs/H2O2 system with peroxidase-like activities at neutral pH for the co-catalytic oxidation of o-phenylenediamine and inhibition of catalytic activity by Cr(III). Sens Actuators B. 2020;319:128273.

    CAS  Google Scholar 

  45. Zhang J, Liu J. Light-activated nanozymes: catalytic mechanisms and applications. Nanoscale. 2020;12(5):2914–23.

    CAS  PubMed  Google Scholar 

  46. Jiang Z, Li H, Deng Y, He Y. Blue light-gated reversible silver nanozyme reaction networks that achieve life-like adaptivity. ACS Sustain Chem Eng. 2020;8(13):5076–81.

    CAS  Google Scholar 

  47. Cheng L, Wu F, Bao H, Li F, Xu G, Zhang Y, Niu W. Unveiling the actual catalytic sites in nanozyme-catalyzed oxidation of o-phenylenediamine. Small. 2021;17(47):2104083.

    CAS  Google Scholar 

  48. Han L, Li C, Zhang T, Lang Q, Liu A. Au@Ag heterogeneous nanorods as nanozyme interfaces with peroxidase-like activity and their application for one-pot analysis of glucose at nearly neutral pH. ACS Appl Mater Interfaces. 2015;7(26):14463–70.

    CAS  PubMed  Google Scholar 

  49. Li D, Guo Q, Ding L, Zhang W, Cheng L, Wang Y, Xu Z, Wang H, Gao L. Bimetallic CuCo2 S4 nanozymes with enhanced peroxidase activity at neutral ph for combating burn infections. ChemBioChem. 2020;21(18):2620–7.

    CAS  PubMed  Google Scholar 

  50. Mu X, Wang J, Li Y, Xu F, Long W, Ouyang L, Liu H, Jing Y, Wang J, Dai H, Liu Q, Sun Y, Liu C, Zhang XD. Redox trimetallic nanozyme with neutral environment preference for brain injury. ACS Nano. 2019;13(2):1870–84.

    CAS  PubMed  Google Scholar 

  51. Tao Y, Lin Y, Huang Z, Ren J, Qu X. Incorporating graphene oxide and gold nanoclusters: a synergistic catalyst with surprisingly high peroxidase-like activity over a broad pH range and its application for cancer cell detection. Adv Mater. 2013;25(18):2594–9.

    CAS  PubMed  Google Scholar 

  52. He F, Mi L, Shen Y, Mori T, Liu S, Zhang Y. Fe–N–C artificial enzyme: activation of oxygen for dehydrogenation and monoxygenation of organic substrates under mild condition and cancer therapeutic application. ACS Appl Mater Interfaces. 2018;10(41):35327–33.

    CAS  PubMed  Google Scholar 

  53. Su L, Qin S, Cai Y, Wang L, Dong W, Mao G, Feng S, Xie Z, Zhang H. Co, N-doped carbon dot nanozymes with acid pH-independence and substrate selectivity for biosensing and bioimaging. Sens Actuators B. 2022;353:131150.

    CAS  Google Scholar 

  54. Hong SJ, Chun H, Hong M, Han B. N- and B-doped fullerene as peroxidase- and catalase-like metal-free nanozymes with pH-switchable catalytic activity: a first-principles approach. Appl Surf Sci. 2022;598:153715.

    CAS  Google Scholar 

  55. Tripathi KM, Ahn HT, Chung M, Le XA, Saini D, Bhati A, Sonkar SK, Kim MI, Kim T. N, S, and P-Co-doped carbon quantum dots: intrinsic peroxidase activity in a wide pH range and its antibacterial applications. ACS Biomater Sci Eng. 2020;6(10):5527–37.

    CAS  PubMed  Google Scholar 

  56. Wang Q, Chen J, Zhang H, Wu W, Zhang Z, Dong S. Porous Co3O4 nanoplates with pH-switchable peroxidase- and catalase-like activity. Nanoscale. 2018;10(40):19140–6.

    CAS  PubMed  Google Scholar 

  57. Zhang J, Wang J, Liao J, Lin Y, Zheng C, Liu J. In situ fabrication of nanoceria with oxidase-like activity at neutral pH: mechanism and boosted bio-nanozyme cascades. ACS Appl Mater Interfaces. 2021;13(42):50236–45.

    CAS  PubMed  Google Scholar 

  58. Hu L, Yuan Y, Zhang L, Zhao J, Majeed S, Xu G. Copper nanoclusters as peroxidase mimetics and their applications to H2O2 and glucose detection. Anal Chim Acta. 2013;762:83–6.

    CAS  PubMed  Google Scholar 

  59. Babacan Tosun R, Kip Ç, Tuncel A. Polymeric template assisted synthesis of monodisperse-porous manganese oxide microspheres: a new nanozyme with oxidase-like activity allowing biomolecule determination via bimodal sensing. New J Chem. 2019;43(47):18505–16.

    CAS  Google Scholar 

  60. Qin Y, Zhang Q, Li Y, Liu X, Lu Z, Zheng L, Liu S, Cao QE, Ding Z. Copper metal-organic polyhedra nanorods with high intrinsic peroxidase-like activity at physiological pH for bio-sensing. J Mater Chem B. 2017;5(47):9365–70.

    CAS  PubMed  Google Scholar 

  61. Xing Y-Y, Chen M-L, Shen X-A, Liang N, Hou X-H. Fe-MIL-88A hexagonal rods as peroxidase mimetic at neutral pH for one-pot glucose colorimetric assay. Chin J Anal Chem. 2022;50(6):100096.

    Google Scholar 

  62. Cheng H, Zhang L, He J, Guo W, Zhou Z, Zhang X, Nie S, Wei H. Integrated nanozymes with nanoscale proximity for in vivo neurochemical monitoring in living brains. Anal Chem. 2016;88(10):5489–97.

    CAS  PubMed  Google Scholar 

  63. Huang H, Song D, Zhang W, Sun Y, Li Y. One step cascade detection of galactose based on a galactose oxidase-composited peroxidase nanozyme. Anal Methods. 2022;14(37):3644–51.

    CAS  PubMed  Google Scholar 

  64. Zhang J, Liu J. Nanozyme-based luminescence detection. Luminescence. 2020;35(8):1185–94.

    CAS  PubMed  Google Scholar 

  65. Hao M, Liu N, Ma Z. A new luminol chemiluminescence sensor for glucose based on pH-dependent graphene oxide. Analyst. 2013;138(15):4393–7.

    CAS  PubMed  Google Scholar 

  66. Marquette CA, Blum LJ. Applications of the luminol chemiluminescent reaction in analytical chemistry. Anal Bioanal Chem. 2006;385(3):546–54.

    CAS  PubMed  Google Scholar 

  67. Behrens H, Totter JR, Philbrook GE. Light emission during the neutralization reaction in presence of a chemiluminescent radical indicator. Nature. 1963;199(4893):595–6.

    CAS  Google Scholar 

  68. Merenyi G, Lind JS. Role of a peroxide intermediate in the chemiluminescence of luminol. A mechanistic study. J Am Chem Soc. 1980;102(18):5830–5.

    CAS  Google Scholar 

  69. Zhang Z-F, Cui H, Lai C-Z, Liu L-J. Gold nanoparticle-catalyzed luminol chemiluminescence and its analytical applications. Anal Chem. 2005;77(10):3324–9.

    CAS  PubMed  Google Scholar 

  70. Lin J-M, Shan X, Hanaoka S, Yamada M. Luminol chemiluminescence in unbuffered solutions with a cobalt(ii)−ethanolamine complex immobilized on resin as catalyst and its application to Analysis. Anal Chem. 2001;73(21):5043–51.

    CAS  PubMed  Google Scholar 

  71. Chang Y, Liu M, Liu J. Highly selective fluorescent sensing of phosphite through recovery of poisoned nickel oxide nanozyme. Anal Chem. 2020;92(4):3118–24.

    CAS  PubMed  Google Scholar 

  72. He S-B, Balasubramanian P, Hu A-L, Zheng X-Q, Lin M-T, Xiao M-X, Peng H-P, Deng H-H, Chen W. One-pot cascade catalysis at neutral pH driven by CuO tandem nanozyme for ascorbic acid and alkaline phosphatase detection. Sens Actuators B. 2020;321:128511.

    CAS  Google Scholar 

  73. Huang Y, Liu C, Pu F, Liu Z, Ren J, Qu X. A GO–Se nanocomposite as an antioxidant nanozyme for cytoprotection. Chem Commun. 2017;53(21):3082–5.

    CAS  Google Scholar 

  74. Zhou M, Diwu Z, Panchuk-Voloshina N, Haugland RP. A stable nonfluorescent derivative of resorufin for the fluorometric determination of trace hydrogen peroxide: applications in detecting the activity of phagocyte NADPH oxidase and other oxidases. Anal Biochem. 1997;253(2):162–8.

    CAS  PubMed  Google Scholar 

  75. Li D, Liu B, Huang PJJ, Zhang Z, Liu J. Highly active fluorogenic oxidase-mimicking NiO nanozymes. Chem Commun. 2018;54(88):12519–22.

    CAS  Google Scholar 

  76. Du Y, Chen H, Chen R, Xu N. Poisoning effect of some nitrogen compounds on nano-sized nickel catalysts in p-nitrophenol hydrogenation. Chem Eng J. 2006;125(1):9–14.

    CAS  Google Scholar 

  77. Liu L, Yang Q, Lei J, Xu N, Ju H. DNA-regulated silver nanoclusters for label-free ratiometric fluorescence detection of DNA. Chem Commun. 2014;50(89):13698–701.

    CAS  Google Scholar 

  78. Fan D, Shang C, Gu W, Wang E, Dong S. Introducing ratiometric fluorescence to MnO2 nanosheet-based biosensing: a simple, label-free ratiometric fluorescent sensor programmed by cascade logic circuit for ultrasensitive GSH detection. ACS Appl Mater Interfaces. 2017;9(31):25870–7.

    CAS  PubMed  Google Scholar 

  79. Lin Z, Li M, Lv S, Zhang K, Lu M, Tang D. In situ synthesis of fluorescent polydopamine nanoparticles coupled with enzyme-controlled dissolution of MnO2 nanoflakes for a sensitive immunoassay of cancer biomarkers. J Mater Chem B. 2017;5(43):8506–13.

    CAS  PubMed  Google Scholar 

  80. Huang X, Liu X, Luo Q, Liu J, Shen J. Artificial selenoenzymes: designed and redesigned. Chem Soc Rev. 2011;40(3):1171–84.

    CAS  PubMed  Google Scholar 

  81. Thomas S, Harding MA, Smith SC, Overdevest JB, Nitz MD, Frierson HF, Tomlins SA, Kristiansen G, Theodorescu D. CD24 is an effector of HIF-1–driven primary tumor growth and metastasis. Cancer Res. 2012;72(21):5600–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Liu C-P, Wu T-H, Liu C-Y, Chen K-C, Chen Y-X, Chen G-S, Lin S-Y. Self-supplying O2 through the catalase-like activity of gold nanoclusters for photodynamic therapy against hypoxic cancer cells. Small. 2017;13(26):1700278.

    Google Scholar 

  83. Kim DH, Hur J, Park HG, Il KM. Reagentless colorimetric biosensing platform based on nanoceria within an agarose gel matrix. Biosens Bioelectron. 2017;93:226–33.

    CAS  PubMed  Google Scholar 

  84. Nguyen PT, Kim YI, Kim MI. Reagent-free colorimetric cholesterol test strip based on self color-changing property of nanoceria. Front Chem. 2020;8:798.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. An P, Rao H, Gao M, Xue X, Liu X, Lu X, Xue Z. Simply translating mercury detection into a temperature measurement: using an aggregation-activated oxidase-like activity of gold nanoparticles. Chem Commun. 2020;56(68):9799–802.

    CAS  Google Scholar 

  86. Tian X, Liao H, Wang M, Feng L, Fu W, Hu L. Highly sensitive chemiluminescent sensing of intracellular Al(3+) based on the phosphatase mimetic activity of cerium oxide nanoparticles. Biosens Bioelectron. 2020;152:112027.

    CAS  PubMed  Google Scholar 

  87. Zhang T, Zhang S, Liu J, Li J, Lu X. Efficient visual chemosensor for hexavalent chromium via a controlled strategy for signal amplification in water. Anal Chem. 2020;92(4):3426–33.

    CAS  PubMed  Google Scholar 

  88. Lien CW, Unnikrishnan B, Harroun SG, Wang CM, Chang JY, Chang HT, Huang CC. Visual detection of cyanide ions by membrane-based nanozyme assay. Biosens Bioelectron. 2018;102:510–7.

    CAS  PubMed  Google Scholar 

  89. Zhou Y, Ma Z. Fluorescent and colorimetric dual detection of mercury (II) by H2O2 oxidation of o-phenylenediamine using Pt nanoparticles as the catalyst. Sens Actuators B. 2017;249:53–8.

    CAS  Google Scholar 

  90. Wu GW, He SB, Peng HP, Deng HH, Liu AL, Lin XH, Xia XH, Chen W. Citrate-capped platinum nanoparticle as a smart probe for ultrasensitive mercury sensing. Anal Chem. 2014;86(21):10955–60.

    CAS  PubMed  Google Scholar 

  91. Liu B, Liu J. DNA adsorption by magnetic iron oxide nanoparticles and its application for arsenate detection. Chem Commun. 2014;50(62):8568–70.

    CAS  Google Scholar 

  92. Chang Y, Chen Q, Liu B, Zhang Z, Liu M, Liu J. Promotion and inhibition of oxidase-like nanoceria and peroxidase-like iron oxide by arsenate and arsenite. Inorg Chem Commun. 2021;134:108979.

    CAS  Google Scholar 

  93. Xu L, Xue D, Sai J, Zhou L, Pei R, Liu A. Accelerating the peroxidase-like activity of Co(2+) by quinaldic acid: mechanism and its analytical applications. Talanta. 2022;239:123080.

    CAS  PubMed  Google Scholar 

  94. Ali S, Sikdar S, Basak S, Das D, Roy D, Salman Haydar M, Kumar Dakua V, Adhikary P, Mandal P, Nath Roy M. Synthesis of β-cyclodextrin grafted rhombohedral-CuO antioxidant nanozyme for detection of dopamine and hexavalent chromium through off–on strategy of peroxidase mimicking activity. Microchem J. 2022;179:107514.

    CAS  Google Scholar 

  95. Liu B, Han X, Liu J. Iron oxide nanozyme catalyzed synthesis of fluorescent polydopamine for light-up Zn(2+) detection. Nanoscale. 2016;8(28):13620–6.

    CAS  PubMed  Google Scholar 

  96. He Y, Li X, Xu X, Pan J, Niu X. A cobalt-based polyoxometalate nanozyme with high peroxidase-mimicking activity at neutral pH for one-pot colorimetric analysis of glucose. J Mater Chem B. 2018;6(36):5750–5.

    CAS  PubMed  Google Scholar 

  97. Su L, Yu X, Qin W, Dong W, Wu C, Zhang Y, Mao G, Feng S. One-step analysis of glucose and acetylcholine in water based on the intrinsic peroxidase-like activity of Ni/Co LDHs microspheres. J Mater Chem B. 2017;5(1):116–22.

    CAS  PubMed  Google Scholar 

  98. Maity S, Bain D, Chakraborty S, Kolay S, Patra A. Copper nanocluster (Cu23 NC)-based biomimetic system with peroxidase activity. ACS Sustain Chem Eng. 2020;8(49):18335–44.

    CAS  Google Scholar 

  99. Adeel M, Canzonieri V, Daniele S, Vomiero A, Rizzolio F, Rahman MM. 2D metal azolate framework as nanozyme for amperometric detection of glucose at physiological pH and alkaline medium. Mikrochim Acta. 2021;188(3):77.

    CAS  PubMed  Google Scholar 

  100. Heo NS, Song HP, Lee SM, Cho HJ, Kim HJ, Huh YS, Kim MI. Rosette-shaped graphitic carbon nitride acts as a peroxidase mimic in a wide pH range for fluorescence-based determination of glucose with glucose oxidase. Mikrochim Acta. 2020;187(5):286.

    CAS  PubMed  Google Scholar 

  101. Gu H, Huang Q, Zhang J, Li W, Fu Y. Heparin as a bifunctional biotemplate for Pt nanocluster with exclusively peroxidase mimicking activity at near-neutral pH. Colloids Surf A. 2020;606:125455.

    CAS  Google Scholar 

  102. He SB, Zhuang QQ, Yang L, Lin MY, Kuang Y, Peng HP, Deng HH, Xia XH, Chen W. A heparinase sensor based on a ternary system of Hg(2+)-heparin-osmium nanoparticles. Anal Chem. 2020;92(1):1635–42.

    CAS  PubMed  Google Scholar 

  103. Xu J, Peng J, Wang X, Hou X. Enhanced peroxidase-like activity of Fe3O4@MIL-100(Fe) aroused by ATP for one-step colorimetric sensing toward cholesterol. ACS Sustain Chem Eng. 2022;10(29):9315–24.

    CAS  Google Scholar 

  104. Huang Y, Liang G, Lin T, Hou L, Ye F, Zhao S. Magnetic Cu/Fe3O4@FeOOH with intrinsic HRP-like activity at nearly neutral pH for one-step biosensing. Anal Bioanal Chem. 2019;411(17):3801–10.

    CAS  PubMed  Google Scholar 

  105. Zhao XL, Liu JL, Xie FT, Yang T, Hu R, Yang YH. Iodide-enhanced Co/Fe-MOFs nanozyme for sensitively colorimetric detection of H2S. Spectrochim Acta A Mol Biomol Spectrosc. 2021;262:120117.

    CAS  PubMed  Google Scholar 

  106. Zhu Q, Yang J, Peng Z, He Z, Chen W, Tang H, Li Y. Selective detection of glutathione by flower-like NiV2O6 with only peroxidase-like activity at neutral pH. Talanta. 2021;234:122645.

    CAS  PubMed  Google Scholar 

  107. Liu Y, Yan J, Sun Z, Huang Y, Li X, Jin Y. Hierarchical flower-like manganese oxide/polystyrene with enhanced oxidase-mimicking performance for sensitive colorimetric detection of glutathione. Mikrochim Acta. 2022;189(2):63.

    CAS  PubMed  Google Scholar 

  108. Bijalwan K, Kumari A, Kaushal N, Indra A, Saha A. Solid-state synthesis of Cu doped CDs with peroxidase-mimicking activity at neutral pH and sensing of antioxidants. ChemNanoMat. 2022;8(3):e202200044.

    CAS  Google Scholar 

  109. He SB, Hu AL, Zhuang QQ, Peng HP, Deng HH, Chen W, Hong GL. Ascorbate oxidase mimetic activity of copper(II) oxide nanoparticles. ChemBioChem. 2020;21(7):978–84.

    CAS  PubMed  Google Scholar 

  110. Liu P, Zhao M, Zhu H, Zhang M, Li X, Wang M, Liu B, Pan J, Niu X. Dual-mode fluorescence and colorimetric detection of pesticides realized by integrating stimulus-responsive luminescence with oxidase-mimetic activity into cerium-based coordination polymer nanoparticles. J Hazard Mater. 2022;423(Pt A):127077.

    CAS  PubMed  Google Scholar 

  111. Song H, Li Z, Peng Y, Li X, Xu X, Pan J, Niu X. Enzyme-triggered in situ formation of Ag nanoparticles with oxidase-mimicking activity for amplified detection of alkaline phosphatase activity. Analyst. 2019;144(7):2416–22.

    CAS  PubMed  Google Scholar 

  112. Nguyen PT, Lee J, Cho A, Kim MS, Choi D, Han JW, Kim MI, Lee J. Rational development of Co-doped mesoporous ceria with high peroxidase-mimicking activity at neutral pH for paper-based colorimetric detection of multiple biomarkers. Adv Funct Mater. 2022;32(21):2112428.

    CAS  Google Scholar 

  113. Zhang C, Ni P, Wang B, Liu W, Jiang Y, Chen C, Sun J, Lu Y. Enhanced oxidase-like activity of g-C3N4 nanosheets supported Pd nanosheets for ratiometric fluorescence detection of acetylcholinesterase activity and its inhibitor. Chin Chem Lett. 2022;33(2):757–61.

    CAS  Google Scholar 

  114. Weerathunge P, Behera BK, Zihara S, Singh M, Prasad SN, Hashmi S, Mariathomas PRD, Bansal V, Ramanathan R. Dynamic interactions between peroxidase-mimic silver NanoZymes and chlorpyrifos-specific aptamers enable highly-specific pesticide sensing in river water. Anal Chim Acta. 2019;1083:157–65.

    CAS  PubMed  Google Scholar 

  115. Zhu H, Liu P, Xu L, Wang M, Pan J, Niu X. Emulsion-templated construction of enzyme-nanozyme integrated hierarchically porous hydrogels for smartphone-assisted pesticide biosensing. Chem Eng J. 2022;433:13366.

    Google Scholar 

  116. Zhu H, Xu L, Hu P, Liu B, Wang M, Yin X, Pan J, Niu X. Smartphone-assisted bioenzyme-nanozyme-chromogen all-in-one test strip with enhanced cascade signal amplification for convenient paraoxon sensing. Biosens Bioelectron. 2022;215:114583.

    CAS  PubMed  Google Scholar 

  117. Wang J, Huang R, Qi W, Su R, Binks BP, He Z. Construction of a bioinspired laccase-mimicking nanozyme for the degradation and detection of phenolic pollutants. Appl Catal B: Environ. 2019;254:452–62.

    CAS  Google Scholar 

  118. Wang J, Huang R, Qi W, Su R, He Z. Preparation of amorphous MOF based biomimetic nanozyme with high laccase- and catecholase-like activity for the degradation and detection of phenolic compounds. Chem Eng J. 2022;434:134677.

    CAS  Google Scholar 

  119. Wang J, Huang R, Qi W, Su R, He Z. Construction of biomimetic nanozyme with high laccase- and catecholase-like activity for oxidation and detection of phenolic compounds. J Hazard Mater. 2022;429:128404.

    CAS  PubMed  Google Scholar 

Download references

Funding

Funding for this work was from the National Natural Science Foundation of China (No. 22104101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinyi Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published in the topical collection Young Investigators in (Bio-)Analytical Chemistry 2023 with guest editors Zhi-Yuan Gu, Beatriz Jurado-Sánchez, Thomas H. Linz, Leandro Wang Hantao, Nongnoot Wongkaew, and Peng Wu.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Liao, J., Lin, Y. et al. Nanozyme’s catalytic activity at neutral pH: reaction substrates and application in sensing. Anal Bioanal Chem 415, 3817–3830 (2023). https://doi.org/10.1007/s00216-023-04525-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-023-04525-w

Keywords

Navigation