Skip to main content
Log in

Robust and high-throughput lipidomic quantitation of human blood samples using flow injection analysis with tandem mass spectrometry for clinical use

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Direct infusion of lipid extracts into the ion source of a mass spectrometer is a well-established method for lipid analysis. In most cases, nanofluidic devices are used for sample introduction. However, flow injection analysis (FIA) based on sample infusion from a chromatographic pump can offer a simple alternative to shotgun-based approaches. Here, we describe important modification of a method based on FIA and tandem mass spectrometry (MS/MS). We focus on minimizing contamination of the FIA/MS both to render the lipidomic platform more robust and to increase its capacity and applicability for long-sequence measurements required in clinical applications. Robust validation of the developed method confirms its suitability for lipid quantitation in human plasma analysis. Measurements of standard human plasma reference material (NIST SRM 1950) and a set of plasma samples collected from kidney cancer patients and from healthy volunteers yielded highly similar results between FIA-MS/MS and ultra-high-performance supercritical fluid chromatography (UHPSFC)/MS, thereby demonstrating that all modifications have practically no effect on the statistical output. Newly modified FIA-MS/MS allows for the quantitation of 141 lipid species in plasma (11 major lipid classes) within 5.7 min. Finally, we tested the method in a clinical laboratory of the General University Hospital in Prague. In the clinical setting, the method capacity reached 257 samples/day. We also show similar performance of the classification models trained based on the results obtained in clinical settings and the analytical laboratory at the University of Pardubice. Together, these findings demonstrate the high potential of the modified FIA-MS/MS for application in clinical laboratories to measure plasma and serum lipid profiles.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ABPR:

Automatic back pressure regulator

CAD:

Collision gas (QTRAP)

ccRCC:

Clear cell renal cell carcinoma

CE:

Cholesteryl esters

Cer:

Ceramides

CUR:

Curtain gas (QTRAP)

DG:

Diacylglycerol

DI-MS:

Direct infusion mass spectrometry

DP:

Declustering potential (QTRAP)

EMA:

European Medicines Agency

ESI:

Electrospray ionization

ESM:

Electronic supplementary materials

FDA:

Food and Drug Administration

FDR:

False discovery rate

FIA:

Flow injection analysis

FIA-MS/MS:

Flow injection analysis coupled with tandem mass spectrometry

FT-ICR:

Fourier-transform ion cyclotron resonance mass spectrometer

GlcCer:

Glucosylceramide

GS1:

Nebulizer gas (QTRAP)

GS2:

Heater gas (QTRAP)

HL:

High concentration level (30 µL spike)

HEX:

Hexane

Hex2Cer:

Di-hexosylceramides

HexCer:

Hexosylceramides

ID:

Internal diameter

IPA:

Isopropanol

IS:

Ion spray voltage (QTRAP)

IS mix:

Internal standard mixture

LL:

Low concentration level (10 µL spike)

LacCer:

Lactosylceramides

LC:

Liquid chromatography

LC/MS:

Liquid chromatography coupled with mass spectrometry

LLOQ:

Lower limit of quantitation

LPC:

Lysophosphatidylcholines

LPE:

Lysophosphatidylethanolamines

LPG:

Lysophosphatidylglycerols

LPI:

Lysophosphatidylinositols

LPS:

Lysophosphatidylserines

ML:

Medium concentration level (20 µL spike)

MeOH:

Methanol

MG:

Monoacylglycerols

MS/MS:

Tandem mass spectrometry

MS:

Mass spectrometry, mass spectrometer

N:

Healthy volunteers (controls)

NLS:

Neutral loss scan(s)

OPLS-DA:

Orthogonal projections to latent structures discriminant analysis

PA:

Glycerophosphates

PC:

Phosphatidylcholines

PC O- :

Ether phosphatidylcholines

PC P- :

Plasmenylcholines (PC plasmalogens)

PCA:

Principal component analysis

PDAC:

Pancreatic ductal adenocarcinoma

PE:

Phosphatidylethanolamines

PE O-:

Ether phosphatidylethanolamines

PE P-:

Plasmenylethanolamines

PG:

Phosphatidylglycerols

PI:

Phosphatidylinositols

PIS:

Precursor ion scan(s)

PS:

Phosphatidylserines

QC:

Quality control sample(s)

QTOF:

Quadrupole time-of-flight mass spectrometer

QTRAP:

Quadrupole ion trap mass spectrometer

RSD:

Relative standard deviation

SFC:

Supercritical fluid chromatography

SM:

Sphingomyelins

T:

Cancer patients, cancer cases

TEM:

Source temperature (QTRAP)

TG:

Triacylglycerols

TIC:

Total ion current

UHPSFC:

Ultra-high-performance supercritical fluid chromatography

UHPSFC/MS:

Ultra-high-performance supercritical fluid chromatography coupled with mass spectrometry

References

  1. Wenk MR. The emerging field of lipidomics. Nat Rev Drug Discov. 2005;4:594–610. https://doi.org/10.1038/nrd1776.

    Article  CAS  Google Scholar 

  2. Burla B, Arita M, Arita M, Bendt AK, Cazenave-Gassiot A, Dennis EA, Ekroos K, Han X, Ikeda K, Liebisch G, Lin MK, Loh TP, Meikle PJ, Orešič M, Quehenberger O, Shevchenko A, Torta F, Wakelam MJO, Wheelock CE, Wenk MR. MS-based lipidomics of human blood plasma: a community-initiated position paper to develop accepted guidelines. J Lipid Res. 2018;59:2001–17. https://doi.org/10.1194/jlr.S087163.

    Article  CAS  Google Scholar 

  3. Quehenberger O, Armando AM, Brown AH, Milne SB, Myers DS, Merrill AH, Bandyopadhyay S, Jones KN, Kelly S, Shaner RL, Sullards CM, Wang E, Murphy RC, Barkley RM, Leiker TJ, Raetz CRH, Guan Z, Laird GM, Six DA, Russell DW, McDonald JG, Subramaniam S, Fahy E, Dennis EA. Lipidomics reveals a remarkable diversity of lipids in human plasma. J Lipid Res. 2010;51:3299–305. https://doi.org/10.1194/jlr.M009449.

    Article  CAS  Google Scholar 

  4. Surma MA, Herzog R, Vasilj A, Klose C, Christinat N, Morin-Rivron D, Simons K, Masoodi M, Sampaio JL. An automated shotgun lipidomics platform for high throughput, comprehensive, and quantitative analysis of blood plasma intact lipids. Eur J Lipid Sci Technol. 2015;117:1540–9. https://doi.org/10.1002/ejlt.201500145.

    Article  CAS  Google Scholar 

  5. Wolrab D, Chocholoušková M, Jirásko R, Peterka O, Holčapek M. Validation of lipidomic analysis of human plasma and serum by supercritical fluid chromatography–mass spectrometry and hydrophilic interaction liquid chromatography–mass spectrometry. Anal Bioanal Chem. 2020;412:2375–88. https://doi.org/10.1007/s00216-020-02473-3.

    Article  CAS  Google Scholar 

  6. Cajka T, Smilowitz JT, Fiehn O. Validating quantitative untargeted lipidomics across nine liquid chromatography–high-resolution mass spectrometry platforms. Anal Chem. 2017;89:12360–8. https://doi.org/10.1021/acs.analchem.7b03404.

    Article  CAS  Google Scholar 

  7. Stephenson DJ, Hoeferlin LA, Chalfant CE. Lipidomics in translational research and the clinical significance of lipid-based biomarkers. Transl Res. 2017;189:13–29. https://doi.org/10.1016/j.trsl.2017.06.006.

    Article  CAS  Google Scholar 

  8. Feingold KR, Grunfeld C. Introduction to Lipids and Lipoproteins. In: Endotext. 2000.

  9. Wang M, Wang C, Han RH, Han X. Novel advances in shotgun lipidomics for biology and medicine. Prog Lipid Res. 2016;61:83–108. https://doi.org/10.1016/j.plipres.2015.12.002.

    Article  CAS  Google Scholar 

  10. Hsu F-F. Mass spectrometry-based shotgun lipidomics – a critical review from the technical point of view. Anal Bioanal Chem. 2018;410:6387–409. https://doi.org/10.1007/s00216-018-1252-y.

    Article  CAS  Google Scholar 

  11. Eggers LF, Schwudke D. Shotgun lipidomics approach for clinical samples. 2018;163–174.

  12. Ståhlman M, Ejsing CS, Tarasov K, Perman J, Borén J, Ekroos K. High-throughput shotgun lipidomics by quadrupole time-of-flight mass spectrometry. J Chromatogr B. 2009;877:2664–72. https://doi.org/10.1016/j.jchromb.2009.02.037.

    Article  CAS  Google Scholar 

  13. Wiesner P, Leidl K, Boettcher A, Schmitz G, Liebisch G. Lipid profiling of FPLC-separated lipoprotein fractions by electrospray ionization tandem mass spectrometry. J Lipid Res. 2009;50:574–85. https://doi.org/10.1194/jlr.D800028-JLR200.

    Article  CAS  Google Scholar 

  14. Liebisch G, Lieser B, Rathenberg J, Drobnik W, Schmitz G. High-throughput quantification of phosphatidylcholine and sphingomyelin by electrospray ionization tandem mass spectrometry coupled with isotope correction algorithm. Biochim Biophys Acta - Mol Cell Biol Lipids. 2004;1686:108–17. https://doi.org/10.1016/j.bbalip.2004.09.003.

    Article  CAS  Google Scholar 

  15. Liebisch G, Binder M, Schifferer R, Langmann T, Schulz B, Schmitz G. High throughput quantification of cholesterol and cholesteryl ester by electrospray ionization tandem mass spectrometry (ESI-MS/MS). Biochim Biophys Acta - Mol Cell Biol Lipids. 2006;1761:121–8. https://doi.org/10.1016/j.bbalip.2005.12.007.

    Article  CAS  Google Scholar 

  16. Wolrab D, Jirásko R, Cífková E, Höring M, Mei D, Chocholoušková M, Peterka O, Idkowiak J, Hrnčiarová T, Kuchař L, Ahrends R, Brumarová R, Friedecký D, Vivo-Truyols G, Škrha P, Škrha J, Kučera R, Melichar B, Liebisch G, Burkhardt R, Wenk MR, Cazenave-Gassiot A, Karásek P, Novotný I, Greplová K, Hrstka R, Holčapek M. Lipidomic profiling of human serum enables detection of pancreatic cancer. Nat Commun. 2022;13:124. https://doi.org/10.1038/s41467-021-27765-9.

    Article  CAS  Google Scholar 

  17. Wolrab D, Jirásko R, Peterka O, Idkowiak J, Chocholoušková M, Vaňková Z, Hořejší K, Brabcová I, Vrána D, Študentová H, Melichar B, Holčapek M. Plasma lipidomic profiles of kidney, breast and prostate cancer patients differ from healthy controls. Sci Rep. 2021;11:20322. https://doi.org/10.1038/s41598-021-99586-1.

    Article  CAS  Google Scholar 

  18. Bowden JA, Bangma JT, Kucklick JR. Development of an Automated Multi-Injection Shotgun Lipidomics Approach Using a Triple Quadrupole Mass Spectrometer. Lipids. 2014;49:609–19. https://doi.org/10.1007/s11745-014-3903-x.

    Article  CAS  Google Scholar 

  19. Züllig T, Köfeler HC. High resolution mass spectrometry in lipidomics. Mass Spectrom Rev. 2021;40:162–76. https://doi.org/10.1002/mas.21627.

    Article  CAS  Google Scholar 

  20. Köfeler HC, Ahrends R, Baker ES, Ekroos K, Han X, Hoffmann N, Holčapek M, Wenk MR, Liebisch G. Recommendations for good practice in MS-based lipidomics. J Lipid Res. 2021;62: 100138. https://doi.org/10.1016/j.jlr.2021.100138.

    Article  CAS  Google Scholar 

  21. Schwudke D, Schuhmann K, Herzog R, Bornstein SR, Shevchenko A. Shotgun lipidomics on high resolution mass spectrometers. Cold Spring Harb Perspect Biol. 2011;3:a004614–a004614. https://doi.org/10.1101/cshperspect.a004614.

    Article  CAS  Google Scholar 

  22. Lipidomics Standard Initiative Guidelines on Lipid Species Identification in the Direct Infusion MS (ESI). Direct Infusion MS (ESI)

  23. Lísa M, Cífková E, Khalikova M, Ovčačíková M, Holčapek M. Lipidomic analysis of biological samples: Comparison of liquid chromatography, supercritical fluid chromatography and direct infusion mass spectrometry methods. J Chromatogr A. 2017;1525:96–108. https://doi.org/10.1016/j.chroma.2017.10.022.

    Article  CAS  Google Scholar 

  24. Höring M, Ejsing CS, Hermansson M, Liebisch G. Quantification of cholesterol and cholesteryl ester by direct flow injection high-resolution Fourier transform mass spectrometry utilizing species-specific response factors. Anal Chem. 2019;91:3459–66. https://doi.org/10.1021/acs.analchem.8b05013.

    Article  CAS  Google Scholar 

  25. Wolrab D, Cífková E, Čáň P, Lísa M, Peterka O, Chocholoušková M, Jirásko R, Holčapek M. LipidQuant 1.0: automated data processing in lipid class separation–mass spectrometry quantitative workflows. Bioinformatics. 2021. https://doi.org/10.1093/bioinformatics/btab644

  26. Liebisch G, Vizcaíno JA, Köfeler H, Trötzmüller M, Griffiths WJ, Schmitz G, Spener F, Wakelam MJO. Shorthand notation for lipid structures derived from mass spectrometry. J Lipid Res. 2013;54:1523–30. https://doi.org/10.1194/jlr.M033506.

    Article  CAS  Google Scholar 

  27. Liebisch G, Fahy E, Aoki J, Dennis EA, Durand T, Ejsing CS, Fedorova M, Feussner I, Griffiths WJ, Köfeler H, Merrill AH, Murphy RC, O’Donnell VB, Oskolkova O, Subramaniam S, Wakelam MJO, Spener F. Update on LIPID MAPS classification, nomenclature, and shorthand notation for MS-derived lipid structures. J Lipid Res. 2020;61:1539–55. https://doi.org/10.1194/jlr.S120001025.

    Article  CAS  Google Scholar 

  28. U.S. Department of Health and Human Services, Administration, Food and Drug, Center for Drug Evaluation and Research (CDER) C for VM (CVM). Bioanalytical Method Validation Guidance for Industry. 2018. https://www.fda.gov/files/drugs/published/Bioanalytical-Method-Validation-Guidance-for-Industry.pdf

  29. European Medicines Agency. Guideline on bioanalytical method validation Guideline on bioanalytical method validation. In: Eur. Med. Agency. 2011. https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-bioanalytical-method-validation_en.pdf

  30. Holčapek M, Liebisch G, Ekroos K. Lipidomic Analysis. Anal Chem. 2018;90:4249–57. https://doi.org/10.1021/acs.analchem.7b05395.

    Article  CAS  Google Scholar 

  31. Bowden JA, Heckert A, Ulmer CZ, Jones CM, Koelmel JP, Abdullah L, Ahonen L, Alnouti Y, Armando AM, Asara JM, Bamba T, Barr JR, Bergquist J, Borchers CH, Brandsma J, Breitkopf SB, Cajka T, Cazenave-Gassiot A, Checa A, Cinel MA, Colas RA, Cremers S, Dennis EA, Evans JE, Fauland A, Fiehn O, Gardner MS, Garrett TJ, Gotlinger KH, Han J, Huang Y, Neo AH, Hyötyläinen T, Izumi Y, Jiang H, Jiang H, Jiang J, Kachman M, Kiyonami R, Klavins K, Klose C, Köfeler HC, Kolmert J, Koal T, Koster G, Kuklenyik Z, Kurland IJ, Leadley M, Lin K, Maddipati KR, McDougall D, Meikle PJ, Mellett NA, Monnin C, Moseley MA, Nandakumar R, Oresic M, Patterson R, Peake D, Pierce JS, Post M, Postle AD, Pugh R, Qiu Y, Quehenberger O, Ramrup P, Rees J, Rembiesa B, Reynaud D, Roth MR, Sales S, Schuhmann K, Schwartzman ML, Serhan CN, Shevchenko A, Somerville SE, St. John-Williams L, Surma MA, Takeda H, Thakare R, Thompson JW, Torta F, Triebl A, Trötzmüller M, Ubhayasekera SJK, Vuckovic D, Weir JM, Welti R, Wenk MR, Wheelock CE, Yao L, Yuan M, Zhao XH, Zhou S. Harmonizing lipidomics: NIST interlaboratory comparison exercise for lipidomics using SRM 1950–Metabolites in Frozen Human Plasma. J Lipid Res. 2017;58:2275–2288. https://doi.org/10.1194/jlr.M079012

  32. Liebisch G, Ahrends R, Arita M, Arita M, Bowden JA, Ejsing CS, Griffiths WJ, Holčapek M, Köfeler H, Mitchell TW, Wenk MR, Ekroos K. Lipidomics needs more standardization. Nat Metab. 2019;1:745–747. https://doi.org/10.1038/s42255-019-0094-z

  33. Broadhurst D, Goodacre R, Reinke SN, Kuligowski J, Wilson ID, Lewis MR, Dunn WB. Guidelines and considerations for the use of system suitability and quality control samples in mass spectrometry assays applied in untargeted clinical metabolomic studies. Metabolomics. 2018;14:72. https://doi.org/10.1007/s11306-018-1367-3.

    Article  CAS  Google Scholar 

  34. Hubert M, Vandervieren E. An adjusted boxplot for skewed distributions. Comput Stat Data Anal. 2008;52:5186–201. https://doi.org/10.1016/j.csda.2007.11.008.

    Article  Google Scholar 

  35. Pang Z, Zhou G, Ewald J, Chang L, Hacariz O, Basu N, Xia J. Using MetaboAnalyst 5.0 for LC–HRMS spectra processing, multi-omics integration and covariate adjustment of global metabolomics data. Nat Protoc. 2022;17:1735–61. https://doi.org/10.1038/s41596-022-00710-w.

    Article  CAS  Google Scholar 

  36. Berry KAZ, Murphy RC. Electrospray ionization tandem mass spectrometry of glycerophosphoethanolamine plasmalogen phospholipids. J Am Soc Mass Spectrom. 2004;15:1499–508. https://doi.org/10.1016/j.jasms.2004.07.009.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Ali Talebi, Vincent de Laat, and Shuncong Wang from KU Leuven, Belgium, for their help in the preparation of the manuscript.

Funding

This work was supported by the grant project NU21-03–00499 funded by Czech Health Research Council. J.B. and K.P. thank the support of the Ministry of Health of the Czech Republic – conceptual development of research organization: RVOVFN 64165/2012 (a program of the General University Hospital in Prague). The obtaining of serum samples was supported by BBMRI-CZ no. LM2018125.

Author information

Authors and Affiliations

Authors

Contributions

Jakub Idkowiak: Methodology, Formal analysis, Investigation, Writing – original draft, Visualization; Robert Jirásko: Methodology, Formal analysis, Investigation, Visualization Writing – review & editing; Denisa Kolářová: Formal analysis, Investigation, Visualization, Writing – review & editing; Josef Bártl: Methodology, Formal analysis, Writing – review & editing; Tomáš Hájek: Methodology, Writing – review & editing; Michela Antonelli: Formal analysis, Investigation, Writing – review & editing; Zuzana Vaňková: Methodology, Writing – review & editing; Denise Wolrab: Methodology, Writing – review & editing; Roman Hrstka: Resources, Writing – review & editing; Hana Študentová: Blood collection, Resources, Writing – review & editing; Bohuslav Melichar: Resources, Writing – review & editing; Karolína Pešková: Methodology, Writing – review & editing; Michal Holčapek: Resources, Project administration, Supervision, Writing-review & editing.

Corresponding author

Correspondence to Robert Jirásko.

Ethics declarations

Ethics approval

All human plasma samples were obtained from University Hospital in Olomouc and the kidney cancer study was conducted in accordance with the Declaration of Helsinki and approved by the Ethics Committee of the University Hospital Olomouc (No. 46/17, approval date 30 March 2017). All subjects gave informed consent. All human serum samples together with clinical data were obtained from the Bank of Biological Material in Masaryk Memorial Cancer Institute in Brno, approved by the institutional ethical committee, and all blood donors gave informed consent.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Idkowiak, J., Jirásko, R., Kolářová, D. et al. Robust and high-throughput lipidomic quantitation of human blood samples using flow injection analysis with tandem mass spectrometry for clinical use. Anal Bioanal Chem 415, 935–951 (2023). https://doi.org/10.1007/s00216-022-04490-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-022-04490-w

Keywords

Navigation