Skip to main content
Log in

A sensitive and robust method for the simultaneous determination of thirty-three legacy and emerging per- and polyfluoroalkyl substances in human plasma and serum

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Legacy and emerging per- and polyfluoroalkyl substances (PFAS) have attracted growing attention due to their potential adverse effects on humans. We developed a method to simultaneously determine thirty-three PFAS (legacy PFAS, precursors, and alternatives) in human plasma and serum using solid phase extraction coupled to ultra-performance liquid chromatography-tandem mass spectrometry (SPE-UPLC-MS/MS). The method yielded good linearity (>0.995) and excellent limits of detection (LODs) (0.0005~0.012 ng mL−1 in plasma and 0.002~0.016 ng mL−1 in serum). The relative recoveries ranged from 80.1 to 116%, with intra- and inter-day precision less than 14.3%. The robustness of this method has been tested continuously for 10 months (coefficients of variation <14.9%). Our method was successfully applied to the PFAS analysis of 42 real human plasma and serum samples collected from women. The proposed method is attractive for the biomonitoring of multi-class PFAS in human health risk assessment and epidemiological studies.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Brase, RA, Mullin, EJ, Spink, DC. Legacy and emerging per- and polyfluoroalkyl substances: analytical techniques, environmental fate, and health effects. Int J Mol Sci. 2021; 22. https://doi.org/10.3390/ijms22030995.

  2. Buck RC, Franklin J, Berger U, Conder JM, Cousins IT, de Voogt P, Jensen AA, Kannan K, Mabury SA, van Leeuwen SP. Perfluoroalkyl and polyfluoroalkyl substances in the environment: terminology, classification, and origins. Integr Environ Assess Manag. 2011;7(4):513–41. https://doi.org/10.1002/ieam.258.

    Article  CAS  Google Scholar 

  3. Giesy JP, Kannan K. Perfluorochemical surfactants in the environment. Environ Sci Technol. 2002;36(7):146a–52a. https://doi.org/10.1021/es022253t.

    Article  CAS  Google Scholar 

  4. Lam J, Koustas E, Sutton P, Johnson Paula I, Atchley Dylan S, Sen S, Robinson Karen A, Axelrad Daniel A, Woodruff TJ. The navigation guide – evidence-based medicine meets environmental health: integration of animal and human evidence for PFOA effects on fetal growth. Environ Health Perspect. 2014;122(10):1040–51. https://doi.org/10.1289/ehp.1307923.

    Article  Google Scholar 

  5. Olsen GW, Burris JM, Ehresman DJ, Froehlich JW, Seacat AM, Butenhoff JL, Zobel LR. Half-life of serum elimination of perfluorooctanesulfonate, perfluorohexanesulfonate, and perfluorooctanoate in retired fluorochemical production workers. Environ Health Perspect. 2007;115(9):1298–305. https://doi.org/10.1289/ehp.10009.

    Article  CAS  Google Scholar 

  6. United States Environmental Protection Agency (US EPA). EPA and 3M announce phase out of PFOS. 2000.

  7. Stockholm Convention. Governments unite to step-up reduction on global DDT reliance and add nine new chemicals under international treaty. 2009.

  8. Stockholm Convention. Request for information specified in Annex E for pentadecafluorooctanoic acid (CAS No: 335–67–1, PFOA, perfluorooctanoic acid), its salts and PFOA-related compounds. 2019.

  9. Joerss H, Schramm T-R, Sun L, Guo C, Tang J, Ebinghaus R. Per- and polyfluoroalkyl substances in Chinese and German river water – Point source- and country-specific fingerprints including unknown precursors. Environ Pollut. 2020;267:115567. https://doi.org/10.1016/j.envpol.2020.115567.

    Article  CAS  Google Scholar 

  10. United States Environmental Protection Agency (US EPA). PFAS Master List of PFAS Substances (Version 2). 2020.

  11. Blake BE, Cope HA, Hall SM, Keys RD, Mahler BW, McCord J, Scott B, Stapleton HM, Strynar MJ, Elmore SA, Fenton SE. Evaluation of maternal, embryo, and placental effects in CD-1 mice following gestational exposure to perfluorooctanoic acid (PFOA) or hexafluoropropylene oxide dimer acid (HFPO-DA or GenX). Environ Health Perspect. 2020; 128(2). https://doi.org/10.1289/EHP6233.

  12. Wang Y, Chang W, Wang L, Zhang Y, Zhang Y, Wang M, Wang Y, Li P. A review of sources, multimedia distribution and health risks of novel fluorinated alternatives. Ecotoxicol Environ Saf. 2019;182:109402. https://doi.org/10.1016/j.ecoenv.2019.109402.

    Article  CAS  Google Scholar 

  13. Shi Y, Vestergren R, Zhou Z, Song X, Xu L, Liang Y, Cai Y. Tissue distribution and whole body burden of the chlorinated polyfluoroalkyl ether sulfonic acid F-53B in Crucian Carp (Carassius carassius): evidence for a highly bioaccumulative contaminant of emerging concern. Environ Sci Technol. 2015;49(24):14156–65. https://doi.org/10.1021/acs.est.5b04299.

    Article  CAS  Google Scholar 

  14. Wang S, Huang J, Yang Y, Hui Y, Ge Y, Larssen T, Yu G, Deng S, Wang B, Harman C. First report of a Chinese PFOS alternative overlooked for 30 years: its toxicity, persistence, and presence in the environment. Environ Sci Technol. 2013;47(18):10163–70. https://doi.org/10.1021/es401525n.

    Article  CAS  Google Scholar 

  15. Yang R, Liu S, Liang X, Yin N, Ruan T, Jiang L, Faiola F. F–53B and PFOS treatments skew human embryonic stem cell in vitro cardiac differentiation towards epicardial cells by partly disrupting the WNT signaling pathway. Environ Pollut. 2020;261:114153. https://doi.org/10.1016/j.envpol.2020.114153.

    Article  CAS  Google Scholar 

  16. Shi G, Wang J, Guo H, Sheng N, Cui Q, Pan Y, Guo Y, Sun Y, Dai J. Parental exposure to 6:2 chlorinated polyfluorinated ether sulfonate (F-53B) induced transgenerational thyroid hormone disruption in zebrafish. Sci Total Environ. 2019;665:855–63. https://doi.org/10.1016/j.scitotenv.2019.02.198.

    Article  CAS  Google Scholar 

  17. Chen Y, Fu J, Ye T, Li X, Gao K, Xue Q, Lv J, Zhang A, Fu J. Occurrence, profiles, and ecotoxicity of poly- and perfluoroalkyl substances and their alternatives in global apex predators: a critical review. J Environ Sci. 2021;109:219–36. https://doi.org/10.1016/j.jes.2021.03.036.

    Article  CAS  Google Scholar 

  18. Zhang W, Pang S, Lin Z, Mishra S, Bhatt P, Chen S. Biotransformation of perfluoroalkyl acid precursors from various environmental systems: advances and perspectives. Environ Pollut. 2021;272:115908. https://doi.org/10.1016/j.envpol.2020.115908.

    Article  CAS  Google Scholar 

  19. Poothong S, Papadopoulou E, Padilla-Sánchez JA, Thomsen C, Haug LS. Multiple pathways of human exposure to poly- and perfluoroalkyl substances (PFASs): from external exposure to human blood. Environ Int. 2020;134:105244. https://doi.org/10.1016/j.envint.2019.105244.

    Article  CAS  Google Scholar 

  20. Hu HXC, Tokranov AK, Liddie J, Zhang X, Grandjean P, Hart JE, Laden F, Sun Q, Yeung LWY, Sunderland EM. Tap water contributions to plasma concentrations of poly- and perfluoroalkyl substances (PFAS) in a nationwide prospective cohort of U.S. women. Environ Health Perspect. 2019;127(6):67006. https://doi.org/10.1289/EHP4093.

    Article  Google Scholar 

  21. Ericson Jogsten I, Nadal M, van Bavel B, Lindström G, Domingo JL. Per- and polyfluorinated compounds (PFCs) in house dust and indoor air in Catalonia, Spain: implications for human exposure. Environ Int. 2012;39(1):172–80. https://doi.org/10.1016/j.envint.2011.09.004.

    Article  CAS  Google Scholar 

  22. Gao K, Fu J, Xue Q, Li Y, Liang Y, Pan Y, Zhang A, Jiang G. An integrated method for simultaneously determining 10 classes of per- and polyfluoroalkyl substances in one drop of human serum. Anal Chim Acta. 2018;999:76–86. https://doi.org/10.1016/j.aca.2017.10.038.

    Article  CAS  Google Scholar 

  23. Bonato M, Corrà F, Bellio M, Guidolin L, Tallandini L, Irato P, Santovito G. PFAS Environmental pollution and antioxidant responses: an overview of the impact on human field. Int J Environ Res Public Health. 2020; 17 (21). https://doi.org/10.3390/ijerph17218020.

  24. Blake BE, Pinney SM, Hines EP, Fenton SE, Ferguson KK. Associations between longitudinal serum perfluoroalkyl substance (PFAS) levels and measures of thyroid hormone, kidney function, and body mass index in the Fernald Community Cohort. Environ Pollut. 2018;242:894–904. https://doi.org/10.1016/j.envpol.2018.07.042.

    Article  CAS  Google Scholar 

  25. Huang M, Jiao J, Zhuang P, Chen X, Wang J, Zhang Y. Serum polyfluoroalkyl chemicals are associated with risk of cardiovascular diseases in national US population. Environ Int. 2018;119:37–46. https://doi.org/10.1016/j.envint.2018.05.051.

    Article  CAS  Google Scholar 

  26. Lei M, Zhang L, Lei J, Zong L, Li J, Wu Z, Wang Z. Overview of emerging contaminants and associated human health effects. Biomed Res Int. 2015;2015:404796. https://doi.org/10.1155/2015/404796.

    Article  CAS  Google Scholar 

  27. McCoy JA, Bangma JT, Reiner JL, Bowden JA, Schnorr J, Slowey M, O’Leary T, Guillette LJ, Parrott BB. Associations between perfluorinated alkyl acids in blood and ovarian follicular fluid and ovarian function in women undergoing assisted reproductive treatment. Sci Total Environ. 2017;605–606:9–17. https://doi.org/10.1016/j.scitotenv.2017.06.137.

    Article  CAS  Google Scholar 

  28. Qi W, Clark JM, Timme-Laragy AR, Park Y. Per- and polyfluoroalkyl substances and obesity, type 2 diabetes and non-alcoholic fatty liver disease: a review of epidemiologic findings. Toxicol Environ Chem. 2020;102(1–4):1–36. https://doi.org/10.1080/02772248.2020.1763997.

    Article  CAS  Google Scholar 

  29. Han W, Gao Y, Yao Q, Yuan T, Wang Y, Zhao S, Shi R, Bonefeld-Jorgensen EC, Shen X, Tian Y. Perfluoroalkyl and polyfluoroalkyl substances in matched parental and cord serum in Shandong. China Environ Int. 2018;116:206–13. https://doi.org/10.1016/j.envint.2018.04.025.

    Article  CAS  Google Scholar 

  30. Lau C, Anitole K, Hodes C, Lai D, Pfahles-Hutchens A, Seed J. Perfluoroalkyl acids: a review of monitoring and toxicological findings. Toxicol Sci. 2007;99(2):366–94. https://doi.org/10.1093/toxsci/kfm128.

    Article  CAS  Google Scholar 

  31. Tian Y, Zhou Y, Miao M, Wang Z, Yuan W, Liu X, Wang X, Wang Z, Wen S, Liang H. Determinants of plasma concentrations of perfluoroalkyl and polyfluoroalkyl substances in pregnant women from a birth cohort in Shanghai. China Environ Int. 2018;119:165–73. https://doi.org/10.1016/j.envint.2018.06.015.

    Article  CAS  Google Scholar 

  32. Kaiser A-M, Aro R, Kärrman A, Weiss S, Hartmann C, Uhl M, Forsthuber M, Gundacker C, Yeung LWY. Comparison of extraction methods for per- and polyfluoroalkyl substances (PFAS) in human serum and placenta samples-insights into extractable organic fluorine (EOF). Anal Bioanal Chem. 2021;413(3):865–76. https://doi.org/10.1007/s00216-020-03041-5.

    Article  CAS  Google Scholar 

  33. Mottaleb MA, Petriello MC, Morris AJ. High-throughput UHPLC-MS/MS measurement of per- and poly-fluorinated alkyl substances in human serum. J Anal Toxicol. 2020;44(4):339–47. https://doi.org/10.1093/jat/bkz097.

    Article  CAS  Google Scholar 

  34. Da Silva BF, Ahmadireskety A, Aristizabal-Henao JJ, Bowden JA. A rapid and simple method to quantify per- and polyfluoroalkyl substances (PFAS) in plasma and serum using 96-well plates. MethodsX. 2020;7:101111. https://doi.org/10.1016/j.mex.2020.101111.

    Article  CAS  Google Scholar 

  35. Bach CC, Bech BH, Nohr EA, Olsen J, Matthiesen NB, Bossi R, Uldbjerg N, Bonefeld-Jørgensen EC, Henriksen TB. Serum perfluoroalkyl acids and time to pregnancy in nulliparous women. Environ Res. 2015;142:535–41. https://doi.org/10.1016/j.envres.2015.08.007.

    Article  CAS  Google Scholar 

  36. Tsai MS, Miyashita C, Araki A, Itoh S, Bamai YA, Goudarzi H, Okada E, Kashino I, Matsuura H, Kishi R. Determinants and temporal trends of perfluoroalkyl substances in pregnant women: the Hokkaido study on environment and children’s health. Int J Environ Res Public Health. 2018; 15 (5). https://doi.org/10.1016/j.scitotenv.2022.155496.

  37. Bao WW, Qian ZM, Geiger SD, Liu E, Liu Y, Wang SQ, Lawrence WR, Yang BY, Hu LW, Zeng XW, Dong GH. Gender-specific associations between serum isomers of perfluoroalkyl substances and blood pressure among Chinese: isomers of C8 Health Project in China. Sci Total Environ. 2017;607–608:1304–12. https://doi.org/10.1016/j.scitotenv.2017.07.124.

    Article  CAS  Google Scholar 

  38. Chow SJ, Ojeda N, Jacangelo JG, Schwab KJ. Detection of ultrashort-chain and other per- and polyfluoroalkyl substances (PFAS) in U.S. bottled water. Water Research. 2021;201:117292. https://doi.org/10.1016/j.watres.2021.117292.

    Article  CAS  Google Scholar 

  39. Kourtchev I, Hellebust S, Heffernan E, Wenger J, Towers S, Diapouli E, Eleftheriadis K. A new on-line SPE LC-HRMS method for the analysis of perfluoroalkyl and polyfluoroalkyl substances (PFAS) in PM(2.5) and its application for screening atmospheric particulates from Dublin and Enniscorthy. Ireland Sci Total Environ. 2022;835:155496. https://doi.org/10.1016/j.scitotenv.2022.155496.

    Article  CAS  Google Scholar 

  40. Gao K, Gao Y, Li Y, Fu J, Zhang A. A rapid and fully automatic method for the accurate determination of a wide carbon-chain range of per- and polyfluoroalkyl substances (C4–C18) in human serum. J Chromatogr A. 2016;1471:1–10. https://doi.org/10.1016/j.chroma.2016.09.050.

    Article  CAS  Google Scholar 

  41. Kato K, Kalathil AA, Patel AM, Ye X, Calafat AM. Per- and polyfluoroalkyl substances and fluorinated alternatives in urine and serum by on-line solid phase extraction-liquid chromatography-tandem mass spectrometry. Chemosphere. 2018;209:338–45. https://doi.org/10.1016/j.chemosphere.2018.06.085.

    Article  CAS  Google Scholar 

  42. Kuklenyik Z, Reich JA, Tully JS, Needham LL, Calafat AM. Automated solid-phase extraction and measurement of perfluorinated organic acids and amides in human serum and milk. Environ Sci Technol. 2004;38(13):3698–704. https://doi.org/10.1021/es040332u.

    Article  CAS  Google Scholar 

  43. United States Food and Drug Administration (US FDA), 2018. Guidance for industry: bioanalytical method validation.

  44. Code of Federal Regulations (CFR). Definition and procedure for the determination of the method detection limit-revision 2, Code of Federal Regulations. Title 40, part 136, Appendix B. 2022.

  45. Ao J, Zhang Q, Tang W, Yuan T, Zhang J. A simple, rapid and sensitive method for the simultaneous determination of eighteen environmental phenols in human urine. Chemosphere. 2021;278:130494. https://doi.org/10.1016/j.chemosphere.2021.130494.

    Article  CAS  Google Scholar 

  46. Ahmed N, Smith RW, Henao JJA, Stark KD, Spagnuolo PA. Analytical method to detect and quantify avocatin B in hass avocado seed and pulp matter. J Nat Prod. 2018;81(4):818–24. https://doi.org/10.1021/acs.jnatprod.7b00914.

    Article  CAS  Google Scholar 

  47. Commission of the European Communities. Commission Decision 2002/657/EC of 12 August 2002 implementing Council Directive 96/23/EC concerning the performance of analytical methods and the interpretation of results. Off J Eur Union. L221, 17/8/2002.

  48. Villagrasa M, Alda M, Barceló D. Environmental analysis of fluorinated alkyl substances by liquid chromatography-(tandem) mass spectrometry: a review. Anal Bioanal Chem. 2006;386(4):953–72. https://doi.org/10.1007/s00216-006-0471-9.

    Article  CAS  Google Scholar 

  49. Barola C, Moretti S, Giusepponi D, Paoletti F, Saluti G, Cruciani G, Brambilla G, Galarini R. A liquid chromatography-high resolution mass spectrometry method for the determination of thirty-three per- and polyfluoroalkyl substances in animal liver. J Chromatogr A. 2020;1628:461442. https://doi.org/10.1016/j.chroma.2020.461442.

    Article  CAS  Google Scholar 

  50. Liu S, Junaid M, Zhong W, Zhu Y, Xu N. A sensitive method for simultaneous determination of 12 classes of per- and polyfluoroalkyl substances (PFASs) in groundwater by ultrahigh performance liquid chromatography coupled with quadrupole orbitrap high resolution mass spectrometry. Chemosphere. 2020;251:126327. https://doi.org/10.1016/j.chemosphere.2020.126327.

    Article  CAS  Google Scholar 

  51. Gardener H, Sun Q, Grandjean P. PFAS concentration during pregnancy in relation to cardiometabolic health and birth outcomes. Environ Res. 2021;192:110287. https://doi.org/10.1016/j.envres.2020.110287.

    Article  CAS  Google Scholar 

  52. Kim K, Bennett DH, Calafat AM, Hertz-Picciotto I, Shin HM. Temporal trends and determinants of serum concentrations of per- and polyfluoroalkyl substances among Northern California mothers with a young child, 2009–2016. Environ Res. 2020;186:109491. https://doi.org/10.1016/j.envres.2020.109491.

    Article  CAS  Google Scholar 

  53. Chang CJ, Ryan PB, Smarr MM, Kannan K, Panuwet P, Dunlop AL, Corwin EJ, Barr DB. Serum per- and polyfluoroalkyl substance (PFAS) concentrations and predictors of exposure among pregnant African American women in the Atlanta area. Georgia Environ Res. 2021;198:110445. https://doi.org/10.1016/j.envres.2020.110445.

    Article  CAS  Google Scholar 

  54. Kang H, Kim H-S, Yoon YS, Lee J, Kho Y, Lee J, Chang HJ, Cho YH, Kim YA. Placental transfer and composition of perfluoroalkyl substances (PFASs): a Korean birth panel of parent-infant triads. Toxics. 2021; 9 (7). https://doi.org/10.3390/toxics9070168.

  55. Zeeshan M, Zhang Y-T, Yu S, Huang W-Z, Zhou Y, Vinothkumar R, Chu C, Li Q-Q, Wu Q-Z, Ye W-L, Zhou P, Dong P, Zeng X-W, Hu L-W, Yang B-Y, Shen X, Zhou Y, Dong G-H. Exposure to isomers of per- and polyfluoroalkyl substances increases the risk of diabetes and impairs glucose-homeostasis in Chinese adults: isomers of C8 health project. Chemosphere. 2021;278:130486. https://doi.org/10.1016/j.chemosphere.2021.130486.

    Article  CAS  Google Scholar 

  56. Li Y, Yu N, Du L, Shi W, Yu H, Song M, Wei S. Transplacental transfer of per- and polyfluoroalkyl substances identified in paired maternal and cord sera using suspect and nontarget screening. Environ Sci Technol. 2020;54(6):3407–16. https://doi.org/10.1021/acs.est.9b06505.

    Article  CAS  Google Scholar 

  57. Mi X, Yang Y-Q, Zeeshan M, Wang Z-B, Zeng X-Y, Zhou Y, Yang B-Y, Hu L-W, Yu H-Y, Zeng X-W, Liu R-Q, Dong G-H. Serum levels of per- and polyfluoroalkyl substances alternatives and blood pressure by sex status: isomers of C8 health project in China. Chemosphere. 2020;261:127691. https://doi.org/10.1016/j.chemosphere.2020.127691.

    Article  CAS  Google Scholar 

  58. Preston EV, Hivert MF, Fleisch AF, Calafat AM, Sagiv SK, Perng W, Rifas-Shiman SL, Chavarro JE, Oken E, Zota AR, James-Todd T. Early-pregnancy plasma per- and polyfluoroalkyl substance (PFAS) concentrations and hypertensive disorders of pregnancy in the Project Viva cohort. Environ Int. 2022;165:107335. https://doi.org/10.1016/j.envint.2022.107335.

    Article  CAS  Google Scholar 

  59. Lewis RC, Johns LE, Meeker JD. Serum biomarkers of exposure to perfluoroalkyl substances in relation to serum testosterone and measures of thyroid function among adults and adolescents from NHANES 2011–2012. Int J Environ Res Public Health. 2015;12(6):6098–114. https://doi.org/10.3390/ijerph120606098.

    Article  CAS  Google Scholar 

  60. Manzano-Salgado CB, Casas M, Lopez-Espinosa MJ, Ballester F, Martinez D, Ibarluzea J, Santa-Marina L, Schettgen T, Vioque J, Sunyer J, Vrijheid M. Variability of perfluoroalkyl substance concentrations in pregnant women by socio-demographic and dietary factors in a Spanish birth cohort. Environ Int. 2016;92–93:357–65. https://doi.org/10.1016/j.envint.2016.04.004.

    Article  CAS  Google Scholar 

  61. Vélez MP, Arbuckle TE, Fraser WD. Maternal exposure to perfluorinated chemicals and reduced fecundity: the MIREC study. Human reproduction (Oxford, England). 2015;30(3):701–9. https://doi.org/10.1093/humrep/deu350.

    Article  CAS  Google Scholar 

  62. Aimuzi R, Luo K, Huang R, Huo X, Nian M, Ouyang F, Du Y, Feng L, Wang W, Zhang J. Perfluoroalkyl and polyfluroalkyl substances and maternal thyroid hormones in early pregnancy. Environ Pollut. 2020;264:114557. https://doi.org/10.1016/j.envpol.2020.114557.

    Article  CAS  Google Scholar 

  63. Llorca M, Pérez F, Farré M, Agramunt S, Kogevinas M, Barceló D. Analysis of perfluoroalkyl substances in cord blood by turbulent flow chromatography coupled to tandem mass spectrometry. Sci Total Environ. 2012;433:151–60. https://doi.org/10.1016/j.scitotenv.2012.05.080.

    Article  CAS  Google Scholar 

  64. Yu CH, Patel B, Palencia M, Fan Z. A sensitive and accurate method for the determination of perfluoroalkyl and polyfluoroalkyl substances in human serum using a high performance liquid chromatography-online solid phase extraction-tandem mass spectrometry. J Chromatogr A. 2017;1480:1–10. https://doi.org/10.1016/j.chroma.2016.11.063.

    Article  CAS  Google Scholar 

  65. Salihović S, Dickens AM, Schoultz I, Fart F, Sinisalu L, Lindeman T, Halfvarson J, Orešič M, Hyötyläinen T. Simultaneous determination of perfluoroalkyl substances and bile acids in human serum using ultra-high-performance liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem. 2020;412(10):2251–9. https://doi.org/10.1007/s00216-019-02263-6.

    Article  CAS  Google Scholar 

  66. Salihovic S, Kärrman A, Lindström G, Lind PM, Lind L, van Bavel B. A rapid method for the determination of perfluoroalkyl substances including structural isomers of perfluorooctane sulfonic acid in human serum using 96-well plates and column-switching ultra-high performance liquid chromatography tandem mass spectrometry. J Chromatogr A. 2013;1305:164–70. https://doi.org/10.1016/j.chroma.2013.07.026.

    Article  CAS  Google Scholar 

  67. Bartolomé M, Gallego-Picó A, Huetos O, Lucena MÁ, Castaño A. A fast method for analysing six perfluoroalkyl substances in human serum by solid-phase extraction on-line coupled to liquid chromatography tandem mass spectrometry. Anal Bioanal Chem. 2016;408(8):2159–70. https://doi.org/10.1007/s00216-016-9319-0.

    Article  CAS  Google Scholar 

  68. Poothong S, Lundanes E, Thomsen C, Haug LS. High throughput online solid phase extraction-ultra high performance liquid chromatography-tandem mass spectrometry method for polyfluoroalkyl phosphate esters, perfluoroalkyl phosphonates, and other perfluoroalkyl substances in human serum, plasma, and whole blood. Anal Chim Acta. 2017;957:10–9. https://doi.org/10.1016/j.aca.2016.12.043.

    Article  CAS  Google Scholar 

  69. Nakayama SF, Isobe T, Iwai-Shimada M, Kobayashi Y, Nishihama Y, Taniguchi Y, Sekiyama M, Michikawa T, Yamazaki S, Nitta H, Oda M, Mitsubuchi H, Sanefuji M, Ohga S, Mise N, Ikegami A, Suga R, Shimono M. Poly- and perfluoroalkyl substances in maternal serum: method development and application in pilot study of the Japan Environment and Children’s Study. J Chromatogr A. 2020;1618:460933. https://doi.org/10.1016/j.chroma.2020.460933.

    Article  CAS  Google Scholar 

  70. Marra V, Abballe A, Dellatte E, Iacovella N, Ingelido AM, De Felip E. A simple and rapid method for quantitative HPLC MS/MS determination of selected perfluorocarboxylic acids and perfluorosulfonates in human serum. Int J Anal Chem. 2020;2020:8878618. https://doi.org/10.1155/2020/8878618.

    Article  CAS  Google Scholar 

  71. European Food Safety Authority (EFSA), Risk to human health related to the presence of perfluoroalkyl substances in food. 2020.

  72. Ministry of Ecology and Environment of the People’s Republic of China (PRC MEE). Exposure factors handbook of Chinese population. China Environmental Science Press, Beijing. 2013.

  73. European Union. Commission Regulation (EU) 2017/1000. 2017.

  74. United States Environmental Protection Agency (US EPA). Drinking Water Standards and Health Advisories. 2018.

  75. The State Council, the People’s Republic of China. Governance Action Plan of New Pollutants. 000014349/2022–00058. 2022. http://www.gov.cn/zhengce/content/2022-05/24/content_5692059.htm. Accessed 24 May 2022.

  76. Aro R, Eriksson U, Kärrman A, Jakobsson K, Yeung LWY. Extractable organofluorine analysis: a way to screen for elevated per- and polyfluoroalkyl substance contamination in humans? Environ Int. 2022;159:107035. https://doi.org/10.1016/j.envint.2021.107035.

    Article  CAS  Google Scholar 

  77. Kang Q, Gao F, Zhang X, Wang L, Liu J, Fu M, Zhang S, Wan Y, Shen H, Hu J. Nontargeted identification of per- and polyfluoroalkyl substances in human follicular fluid and their blood-follicle transfer. Environ Int. 2020;139:105686. https://doi.org/10.1016/j.envint.2020.105686.

    Article  CAS  Google Scholar 

  78. Miaz LT, Plassmann MM, Gyllenhammar I, Bignert A, Sandblom O, Lignell S, Glynn A, Benskin JP. Temporal trends of suspect- and target-per/polyfluoroalkyl substances (PFAS), extractable organic fluorine (EOF) and total fluorine (TF) in pooled serum from first-time mothers in Uppsala, Sweden, 1996–2017. Environ Sci: Processes & Impacts. 2020;22(4):1071–83. https://doi.org/10.1039/C9EM00502A.

    Article  CAS  Google Scholar 

  79. Hallberg I, Plassmann M, Olovsson M, Holte J, Damdimopoulou P, Sjunnesson YCB, Benskin JP, Persson S. Suspect and non-target screening of ovarian follicular fluid and serum – identification of anthropogenic chemicals and investigation of their association to fertility. Environ Sci: Processes & Impacts. 2021;23(10):1578–88. https://doi.org/10.1039/D1EM00211B.

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported in part by the National Natural Science Foundation of China (41991314), the Science and Technology Development Funds of Shanghai of China (22YF1426700), and the Collaborative Innovation Program of Shanghai Municipal Health Commission (2020CXJQ01).

Author information

Authors and Affiliations

Authors

Contributions

Yan Ao: Conceptualization, methodology and writing. Min Nin: Methodology and reviewing. Weifeng Tang: Investigation and validation. Jun Zhang: Reviewing. Qianlong Zhang: Investigation and reviewing. Junjie Ao: Project administration, conceptualization, reviewing and editing.

Corresponding authors

Correspondence to Qianlong Zhang or Junjie Ao.

Ethics declarations

Human samples/ethical statements

Human samples were included in this study. This study was approved by the Ethical Committee of the Xinhua Hospital affiliated to the Shanghai Jiao Tong University School of Medicine (No: XHEC-C-2013–001).

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 741 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ao, Y., Nian, M., Tang, W. et al. A sensitive and robust method for the simultaneous determination of thirty-three legacy and emerging per- and polyfluoroalkyl substances in human plasma and serum. Anal Bioanal Chem 415, 457–470 (2023). https://doi.org/10.1007/s00216-022-04426-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-022-04426-4

Keywords

Navigation