Skip to main content
Log in

Absolute quantification of cholesterol from thin tissue sections by silver-assisted laser desorption ionization mass spectrometry imaging

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Cholesterol is essential to all animal life, and its dysregulation is observed in many diseases. For some of these, the precise determination of cholesterol’s histological location and absolute abundance at cellular length scales within tissue samples would open the door to a more fundamental understanding of the role of cholesterol in disease onset and progression. We have developed a fast and simple method for absolute quantification of cholesterol within brain samples based on the sensitive detection and mapping of cholesterol by silver-assisted laser desorption ionization mass spectrometry imaging (AgLDI MSI) from thin tissue sections. Reproducible calibration curves were generated by depositing a range of cholesterol-D7 concentrations on brain homogenate tissue sections combined with the homogeneous spray deposition of a non-animal steroid reference standard detectable by AgLDI MSI to minimize experimental variability. Results obtained from serial brain sections gave consistent cholesterol quantitative values in very good agreement with those obtained with other mass spectrometry-based methods.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Spector AA, Yorek MA. Membrane lipid composition and cellular function. J Lipid Res. 1985;26(9):1015–35.

    Article  CAS  PubMed  Google Scholar 

  2. Luu W, Sharpe LJ, Gelissen IC, Brown AJ. The role of signalling in cellular cholesterol homeostasis. IUBMB Life. 2013;65(8):675–84.

    Article  CAS  PubMed  Google Scholar 

  3. Virani SS, Alonso A, Aparicio HJ, Benjamin EJ, Bittencourt MS, Callaway CW, et al. Heart disease and stroke statistics-2021 update: a report from the American Heart Association. Circulation. 2021;143(8):e254–743.

    Article  PubMed  Google Scholar 

  4. Feringa FM, van der Kant R. Cholesterol and alzheimer’s disease; from risk genes to pathological effects. Frontiers in Aging Neuroscience. 2021;13: 690372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sjögren M, Blennow K. The link between cholesterol and Alzheimer’s disease. World J Biol Psychiatry. 2005;6(2):85–97.

    Article  PubMed  Google Scholar 

  6. Vance JE. Dysregulation of cholesterol balance in the brain: contribution to neurodegenerative diseases. Dis Model Mech. 2012;5(6):746–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Patti GJ, Shriver LP, Wassif CA, Woo HK, Uritboonthai W, Apon J, et al. Nanostructure-initiator mass spectrometry (NIMS) imaging of brain cholesterol metabolites in Smith-Lemli-Opitz syndrome. Neuroscience. 2010;170(3):858–64.

    Article  CAS  PubMed  Google Scholar 

  8. Radišauskas R, Kuzmickienė I, Milinavičienė E, Everatt R. Hypertension, serum lipids and cancer risk: a review of epidemiological evidence. Medicina (Kaunas). 2016;52(2):89–98.

    Article  Google Scholar 

  9. Murai T. Cholesterol lowering: role in cancer prevention and treatment. Biol Chem. 2015;396(1):1–11.

    Article  CAS  PubMed  Google Scholar 

  10. Li C, Yang L, Zhang D, Jiang W. Systematic review and meta-analysis suggest that dietary cholesterol intake increases risk of breast cancer. Nutr Res. 2016;36(7):627–35.

    Article  CAS  PubMed  Google Scholar 

  11. Li LH, Dutkiewicz EP, Huang YC, Zhou HB, Hsu CC. Analytical methods for cholesterol quantification. J Food Drug Anal. 2019;27(2):375–86.

    Article  CAS  PubMed  Google Scholar 

  12. Ščupáková K, Balluff B, Tressler C, Adelaja T, Heeren RMA, Glunde K, et al. Cellular resolution in clinical MALDI mass spectrometry imaging: the latest advancements and current challenges. Clin Chem Lab Med. 2020;58(6):914–29.

    Article  PubMed  CAS  Google Scholar 

  13. Gilmore IS, Heiles S, Pieterse CL. Metabolic imaging at the single-cell scale: recent advances in mass spectrometry imaging. Annu Rev Anal Chem (Palo Alto Calif). 2019;12(1):201–24.

    Article  CAS  Google Scholar 

  14. Cologna SM. Mass spectrometry imaging of cholesterol. In: Rosenhouse-Dantsker A, Bukiya AN, editors. Cholesterol modulation of protein function: sterol specificity and indirect mechanisms. Cham: Springer International Publishing; 2019. p. 155–66.

    Chapter  Google Scholar 

  15. Altelaar AFM, van Minnen J, Heeren RMA, Piersma SR. The influence of the cholesterol microenvironment in tissue sections on molecular ionization efficiencies and distributions in ToF-SIMS. Appl Surf Sci. 2006;252(19):6702–5.

    Article  CAS  Google Scholar 

  16. Nygren H, Malmberg P, Kriegeskotte C, Arlinghaus HF. Bioimaging TOF-SIMS: localization of cholesterol in rat kidney sections. FEBS Lett. 2004;566(1–3):291–3.

    Article  CAS  PubMed  Google Scholar 

  17. Nygren H, Malmberg P. Silver deposition on freeze-dried cells allows subcellular localization of cholesterol with imaging TOF-SIMS. J Microsc. 2004;215(2):156–61.

    Article  CAS  PubMed  Google Scholar 

  18. Solé-Domènech S, Sjövall P, Vukojević V, Fernando R, Codita A, Salve S, et al. Localization of cholesterol, amyloid and glia in Alzheimer’s disease transgenic mouse brain tissue using time-of-flight secondary ion mass spectrometry (ToF-SIMS) and immunofluorescence imaging. Acta Neuropathol. 2013;125(1):145–57.

    Article  PubMed  CAS  Google Scholar 

  19. Schober Y, Guenther S, Spengler B, Römpp A. Single cell matrix-assisted laser desorption/ionization mass spectrometry imaging. Anal Chem. 2012;84(15):6293–7.

    Article  CAS  PubMed  Google Scholar 

  20. Castro-Perez J, Hatcher N, Kofi Karikari N, Wang SP, Mendoza V, Shion H, et al. In vivo isotopically labeled atherosclerotic aorta plaques in ApoE KO mice and molecular profiling by matrix-assisted laser desorption/ionization mass spectrometric imaging. Rapid Commun Mass Spectrom. 2014;28(22):2471–9.

    Article  CAS  PubMed  Google Scholar 

  21. Angelini R, Yutuc E, Wyatt MF, Newton J, Yusuf FA, Griffiths L, et al. Visualizing cholesterol in the brain by on-tissue derivatization and quantitative mass spectrometry imaging. Anal Chem. 2021;93(11):4932–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang X, Hou Y, Hou Z, Xiong W, Huang G. Mass spectrometry imaging of brain cholesterol and metabolites with trifluoroacetic acid-enhanced desorption electrospray ionization. Anal Chem. 2019;91(4):2719–26.

    Article  CAS  PubMed  Google Scholar 

  23. Wu C, Ifa DR, Manicke NE, Cooks RG. Rapid, direct analysis of cholesterol by charge labeling in reactive desorption electrospray ionization. Anal Chem. 2009;81(18):7618–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Manicke NE, Nefliu M, Wu C, Woods JW, Reiser V, Hendrickson RC, et al. Imaging of lipids in atheroma by desorption electrospray ionization mass spectrometry. Anal Chem. 2009;81(21):8702–7.

    Article  CAS  PubMed  Google Scholar 

  25. Wu C, Ifa DR, Manicke NE, Cooks RG. Molecular imaging of adrenal gland by desorption electrospray ionization mass spectrometry. Analyst. 2010;135(1):28–32.

    Article  CAS  PubMed  Google Scholar 

  26. Müller WH, Verdin A, De Pauw E, Malherbe C, Eppe G. Surface-assisted laser desorption/ionization mass spectrometry imaging: a review. Mass Spectrom Rev. 2022;41(3):373–420.

    Article  PubMed  CAS  Google Scholar 

  27. Yagnik GB, Hansen RL, Korte AR, Reichert MD, Vela J, Lee YJ. Large scale nanoparticle screening for small molecule analysis in laser desorption ionization mass spectrometry. Anal Chem. 2016;88(18):8926–30.

    Article  CAS  PubMed  Google Scholar 

  28. Muller L, Kailas A, Jackson SN, Roux A, Barbacci DC, Schultz JA, et al. Lipid imaging within the normal rat kidney using silver nanoparticles by matrix-assisted laser desorption/ionization mass spectrometry. Kidney Int. 2015;88(1):186–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Xu L, Kliman M, Forsythe JG, Korade Z, Hmelo AB, Porter NA, et al. Profiling and imaging ion mobility-mass spectrometry analysis of cholesterol and 7-dehydrocholesterol in cells via sputtered silver MALDI. J Am Soc Mass Spectrom. 2015;26(6):924–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Roux A, Muller L, Jackson SN, Post J, Baldwin K, Hoffer B, et al. Mass spectrometry imaging of rat brain lipid profile changes over time following traumatic brain injury. J Neurosci Methods. 2016;272:19–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dufresne M, Thomas A, Breault-Turcot J, Masson J-F, Chaurand P. Silver-assisted laser desorption ionization for high spatial resolution imaging mass spectrometry of olefins from thin tissue sections. Anal Chem. 2013;85(6):3318–24.

    Article  CAS  PubMed  Google Scholar 

  32. Dufresne M, Patterson NH, Lauzon N, Chaurand P. Assessing the potential of metal-assisted imaging mass spectrometry in cancer research. Adv Cancer Res. 2017;134:67–84.

    Article  CAS  PubMed  Google Scholar 

  33. Yang E, Fournelle F, Chaurand P. Silver spray deposition for AgLDI imaging MS of cholesterol and other olefins on thin tissue sections. J Mass Spectrom. 2020;55(4): e4428.

    Article  CAS  PubMed  Google Scholar 

  34. Lauzon N, Dufresne M, Beaudoin A, Chaurand P. Forensic analysis of latent fingermarks by silver-assisted LDI imaging MS on nonconductive surfaces. J Mass Spectrom. 2017;52(6):397–404.

    Article  CAS  PubMed  Google Scholar 

  35. Groseclose MR, Castellino S. A mimetic tissue model for the quantification of drug distributions by MALDI imaging mass spectrometry. Anal Chem. 2013;85(21):10099–106.

    Article  CAS  PubMed  Google Scholar 

  36. Patterson NH, Thomas A, Chaurand P. Monitoring time-dependent degradation of phospholipids in sectioned tissues by MALDI imaging mass spectrometry. J Mass Spectrom. 2014;49(7):622–7.

    Article  CAS  PubMed  Google Scholar 

  37. Bemis KD, Harry A, Eberlin LS, Ferreira C, van de Ven SM, Mallick P, et al. Cardinal: an R package for statistical analysis of mass spectrometry-based imaging experiments. Bioinformatics. 2015;31(14):2418–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bothe HW, Bodsch W, Hossmann KA. Relationship between specific gravity, water content, and serum protein extravasation in various types of vasogenic brain edema. Acta Neuropathol. 1984;64(1):37–42.

    Article  CAS  PubMed  Google Scholar 

  39. Van Nuffel S, Elie N, Yang E, Nouet J, Touboul D, Chaurand P, et al. Insights into the MALDI process after matrix deposition by sublimation using 3D ToF-SIMS imaging. Anal Chem. 2018;90(3):1907–14.

    Article  PubMed  CAS  Google Scholar 

  40. Bich C, Havelund R, Moellers R, Touboul D, Kollmer F, Niehuis E, et al. Argon cluster ion source evaluation on lipid standards and rat brain tissue samples. Anal Chem. 2013;85(16):7745–52.

    Article  CAS  PubMed  Google Scholar 

  41. Sjövall P, Johansson B, Lausmaa J. Localization of lipids in freeze-dried mouse brain sections by imaging TOF-SIMS. Appl Surf Sci. 2006;252(19):6966–74.

    Article  CAS  Google Scholar 

  42. Jones EA, Lockyer NP, Vickerman JC. Depth profiling brain tissue sections with a 40 keV C60+ primary ion beam. Anal Chem. 2008;80(6):2125–32.

    Article  CAS  PubMed  Google Scholar 

  43. Dietschy JM, Turley SD. Thematic review series: brain lipids. Cholesterol metabolism in the central nervous system during early development and in the mature animal. J Lipid Res. 2004;45(8):1375–97.

Download references

Acknowledgements

The authors would like to thank Pr. Jean-Francois Masson (Dept of Chemistry, Université de Montréal) for unlimited access to the metal sputtering system used in this study.

Funding

P. Chaurand received funding from the Natural Sciences and Engineering Research Council of Canada (NSERC-RGPIN-2021-03125). P. Chaurand and L.M. Munter received funding from the Canadian Institutes of Health Research (CIHR-PJT-162302).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Chaurand.

Ethics declarations

Declarations

All animals used were obtained from the Institut de Recherche en Immunologie et en Cancérologie (Université de Montréal) animal housing service. Animals were ethically sacrificed following internationally recognized guidelines after ethics approval from the Université de Montréal. The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 520 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nezhad, Z.S., Salazar, J.P., Pryce, R.S. et al. Absolute quantification of cholesterol from thin tissue sections by silver-assisted laser desorption ionization mass spectrometry imaging. Anal Bioanal Chem 414, 6947–6954 (2022). https://doi.org/10.1007/s00216-022-04262-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-022-04262-6

Keywords

Navigation