Skip to main content
Log in

Enzyme-nanozyme cascade colorimetric sensor platform: a sensitive method for detecting human serum creatinine

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Creatinine, as a significant biomarker for kidney, thyroid, and muscle dysfunction-related diseases, detection is of great important meaning. In this paper, an enzyme-nanozyme cascade sensing platform was developed for visual creatinine detection. Perovskite oxide BiFeO3 synthesized by a sol–gel method was applied as a nanozyme, showing excellent peroxidase-like activity. During detection, creatinine was oxidized in turn by three natural enzymes (creatinase, creatininase, and sarcosine oxidase) to produce H2O2, and H2O2 was then catalyzed by the BiFeO3 nanozyme, resulting in the change of achromatous 3,3′,5,5′-tetramethylbenzidine (TMB) into blue oxidized TMB (oxTMB). Based on this principle, visual quantification of creatinine was realized. Due to the high stability and catalytic efficiency of nanozyme, the cascade sensing platform can be used to detect creatinine in a broad range of 0.5–150 μM with a detection limit of 0.09 μM. Meanwhile, thanks to the specificity of the natural enzymes, the platform exhibited admirable selectivity for creatinine determination despite the existence of a variety of interfering substances, which were successfully adopted to measure the level of creatinine in human serums. The cascade sensing platform is expected to serve the determination of a large number of biomarkers by simply alternating the natural enzymes.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Pundir CS, Kumar P, Jaiwal R. Biosensing methods for determination of creatinine: a review. Biosens Bioelectron. 2019;126:707–24. https://doi.org/10.1016/j.bios.2018.11.031.

  2. Ruedas-Rama MJ, Hall EAH. Analytical nanosphere sensors using quantum dot-enzyme conjugates for urea and creatinine. Anal Chem. 2010;82(21):9043–9. https://doi.org/10.1021/ac101838n.

    Article  CAS  PubMed  Google Scholar 

  3. Lad U, Khokhar S, Kale GM. Electrochemical creatinine biosensors. Anal Chem. 2008;80(21):7910–7. https://doi.org/10.1021/ac801500t.

    Article  CAS  PubMed  Google Scholar 

  4. Udy A, O’Donoghue S, D’Intini V, Healy H, Lipman J. Point of care measurement of plasma creatinine in critically ill patients with acute kidney injury. Anesthesia. 2009;64(4):403–7. https://doi.org/10.1111/j.1365-2044.2008.05818.x.

    Article  CAS  Google Scholar 

  5. Schenk PW, Cransberg K, Wolff ED, de Rijke YB. Point-of-care creatinine testing in children at risk for sudden deterioration of renal function. Clin Chem Lab Med. 2007;45(11):1536–41. https://doi.org/10.1515/cclm.2007.314.

    Article  CAS  PubMed  Google Scholar 

  6. Delcampo G, Irastorza A, Casado JA. Spectrophotometric simultaneous determination of creatinine and creatine by flow-injection with reagent injection. Fresenius J Anal Chem. 1995;352(6):557–61. https://doi.org/10.1007/bf00323073.

    Article  CAS  Google Scholar 

  7. Yang YD. Simultaneous determination of creatine, uric acid, creatinine and hippuric acid in urine by high performance liquid chromatography. Biomed Chromatogr. 1998;12(2):47–9.

    Article  CAS  Google Scholar 

  8. Choi SH, Lee SD, Shin JH, Ha J, Nam H, Cha GS. Amperometric biosensors employing an insoluble oxidant as an interference-removing agent. Anal Chim Acta. 2002;461(2):251–60. https://doi.org/10.1016/s0003-2670(02)00281-7.

    Article  CAS  Google Scholar 

  9. Junge W, Wilke B, Halabi A, Klein G. Determination of reference intervals for serum creatinine, creatinine excretion and creatinine clearance with an enzymatic and a modified Jaffe method. Clin Chim Acta. 2004;344(1–2):137–48. https://doi.org/10.1016/j.cccn.2004.02.007.

    Article  CAS  PubMed  Google Scholar 

  10. Panteghini M. Enzymatic assays for creatinine: time for action. Scand J Clin Lab Invest. 2008;68:84–8. https://doi.org/10.1080/00365510802149978.

    Article  CAS  Google Scholar 

  11. Wu J, Wang X, Wang Q, Lou Z, Li S, Zhu Y, Qin L, Wei H. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II). Chem Soc Rev. 2019;48(4):1004–76. https://doi.org/10.1039/c8cs00457a.

    Article  CAS  PubMed  Google Scholar 

  12. Wang Q, Wei H, Zhang Z, Wang E, Dong S. Nanozyme: an emerging alternative to natural enzyme for biosensing and immunoassay. Trac-Trends in Anal Chem. 2018;105:218–24. https://doi.org/10.1016/j.trac.2018.05.012.

    Article  CAS  Google Scholar 

  13. Wang Y, Wang D, Sun L-H, Zhang L-C, Lu Z-S, Xue P, Wang F, Xia Q-Y, Bao S-J. BC@DNA-Mn-3(PO4)(2) nanozyme for real-time detection of superoxide from living cells. Anal Chem. 2020;92(24):15927–35. https://doi.org/10.1021/acs.analchem.0c03322.

    Article  CAS  PubMed  Google Scholar 

  14. Wei H, Wang EK. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem Soc Rev. 2013;42(14):6060–93. https://doi.org/10.1039/c3cs35486e.

    Article  CAS  PubMed  Google Scholar 

  15. Ragg R, Tahir MN, Tremel W. Solids go bio: inorganic nanoparticles as enzyme mimics. Eur J Inorg Chem. 2016;13–14:1906–15. https://doi.org/10.1002/ejic.201501237.

    Article  CAS  Google Scholar 

  16. Walther R, Winther AK, Fruergaard AS, van den Akker W, Sorensen L, Nielsen SM, Olesen MTJ, Dai Y, Jeppesen HS, Lamagni P, Savateev A, Pedersen S-EL, Frich CK, Vigier-Carriere C, Lock N, Singh M, Bansal V, Meyer RL, Zelikin AN. Identification and directed development of non-organic catalysts with apparent pan-enzymatic mimicry into nanozymes for efficient prodrug conversion. Angew Chem Int Edit. 2019;58(1):278–82. https://doi.org/10.1002/anie.201812668.

    Article  CAS  Google Scholar 

  17. Zhou Y, Liu B, Yang R, Liu J. Filling in the gaps between nanozymes and enzymes: challenges and opportunities. Bioconjug Chem. 2017;28(12):2903–9. https://doi.org/10.1021/acs.bioconjchem.7b00673.

    Article  CAS  PubMed  Google Scholar 

  18. Zhang Q, Chen S, Wang H, Yu H. Exquisite enzyme-fenton biomimetic catalysts for hydroxyl radical production by mimicking an enzyme cascade. Acs Appl Mater Inter. 2018;10(10):8666–75. https://doi.org/10.1021/acsami.7b18690.

    Article  CAS  Google Scholar 

  19. Liu M, Mou J, Xu X, Zhang F, Xia J, Wang Z. High-efficiency artificial enzyme cascade bio-platform based on MOF-derived bimetal nanocomposite for biosensing. Talanta. 2020;220:21374. https://doi.org/10.1016/j.talanta.2020.121374

  20. Tao X, Wang X, Liu B, Liu J. Conjugation of antibodies and aptamers on nanozymes for developing biosensors. Biosens Bioelectron. 2020;168:112537. https://doi.org/10.1016/j.bios.2020.112537.

    Article  CAS  PubMed  Google Scholar 

  21. Xu W, Jiao L, Yan H, Wu Y, Chen L, Gu W, Du D, Lin Y, Zhu C. Glucose oxidase-integrated metal-organic framework hybrids as biomimetic cascade nanozymes for ultrasensitive glucose biosensing. Acs Appl Mater Inter. 2019;11(25):22096–101. https://doi.org/10.1021/acsami.9b03004.

    Article  CAS  Google Scholar 

  22. Liang M, Fan K, Pan Y, Jiang H, Wang F, Yang D, Lu D, Feng J, Zhao J, Yang L, Yan X. Fe3O4 magnetic nanoparticle peroxidase mimetic-based colorimetric assay for the rapid detection of organophosphorus pesticide and nerve agent. Anal Chem. 2013;85(1):308–12. https://doi.org/10.1021/ac302781r.

    Article  CAS  PubMed  Google Scholar 

  23. Sun C, Alonso JA, Bian J (2021) Recent advances in perovskite-type oxides for energy conversion and storage applications. Advanced Energy Materials 11 (2). https://doi.org/10.1002/aenm.202000459

  24. Islam QA, Majee R, Bhattacharyya S. Bimetallic nanoparticle decorated perovskite oxide for state-of-the-art trifunctional electrocatalysis. J Mater Chem A. 2019;7(33):19453–64. https://doi.org/10.1039/c9ta06123a.

    Article  CAS  Google Scholar 

  25. Zhao H, Hou Y, Yu X, Zheng M, Zhu M. Giant high-temperature piezoelectricity in perovskite oxides for vibration energy harvesting. J Mater Chem A. 2021;9(4):2284–91. https://doi.org/10.1039/d0ta09796a.

    Article  CAS  Google Scholar 

  26. Zhou JS, Marshall LG, Li ZY, Li X, He JM (2020) Weak ferromagnetism in perovskite oxides. Physical Review B 102 (10). https://doi.org/10.1103/PhysRevB.102.104420

  27. Gu T, Scarbrough T, Yang Y, Iniguez J, Bellaiche L, Xiang HJ (2018) Cooperative couplings between octahedral rotations and ferroelectricity in perovskites and related materials. Physical Review Letters 120 (19). https://doi.org/10.1103/PhysRevLett.120.197602

  28. Bai Y, Siponkoski T, Perantie J, Jantunen H, Juuti J (2017) Ferroelectric, pyroelectric, and piezoelectric properties of a photovoltaic perovskite oxide. Applied Physics Letters 110 (6). https://doi.org/10.1063/1.4974735

  29. Kim M, Klenner S, McNally GM, Nuss J, Yaresko A, Wedig U, Kremer RK, Poettgen R, Takagi H. Mixed valence and superconductivity in perovskite antimonates. Chem Mater. 2021;33(17):6787–93. https://doi.org/10.1021/acs.chemmater.1c01362.

    Article  CAS  Google Scholar 

  30. Chen L, Yang J, Chen W, Sun S, Tang H, Li Y. Perovskite mesoporous LaFeO3 with peroxidase-like activity for colorimetric detection of gallic acid. Sensor Actuat B-Chem. 2020;321:128642. https://doi.org/10.1016/j.snb.2020.128642

  31. Chauhan S, Kumar M, Chhoker S, Katyal SC. A comparative study on structural, vibrational, dielectric and magnetic properties of microcrystalline BiFeO3, nanocrystalline BiFeO3 and coreeshell structured BiFeO3@SiO2 nanoparticles. J Alloy Compd. 2016;666:454–67. https://doi.org/10.1016/j.jallcom.2016.01.116.

    Article  CAS  Google Scholar 

  32. You H, Jia Y, Wu Z, Xu X, Qian W, Xia Y, Ismail M. Strong piezo-electrochemical effect of multiferroic BiFeO3 square micro-sheets for mechanocatalysis. Electrochem Commun. 2017;79:55–8. https://doi.org/10.1016/j.elecom.2017.04.017.

  33. Rizwan S, Awan SU, Irfan S. Room-temperature ferromagnetism in Gd and Sn co-doped bismuth ferrite nanoparticles and co-doped BiFeO3/MXene (Ti3C2) nanohybrids for spintronics applications. Ceram Int. 2020;46(18):29011–21. https://doi.org/10.1016/j.ceramint.2020.08.072.

    Article  CAS  Google Scholar 

  34. Xiang Z, Wang Y, Ju P, Zhang D. Optical determination of hydrogen peroxide by exploiting the peroxidase-like activity of AgVO3 nanobelts. Microchim Acta. 2016;183(1):457–63. https://doi.org/10.1007/s00604-015-1670-x.

    Article  CAS  Google Scholar 

  35. Yu Y, Ju P, Zhang D, Han X, Yin X, Zheng L, Sun C. Peroxidase-like activity of FeVO4 nanobelts and its analytical application for optical detection of hydrogen peroxide. Sensor Actuat B-Chem. 2016;233:162–72. https://doi.org/10.1016/j.snb.2016.04.041.

    Article  CAS  Google Scholar 

  36. Ju P, Xiang Y, Xiang Z, Wang M, Zhao Y, Zhang D, Yu J, Han X. BiOI hierarchical nanoflowers as novel robust peroxidase mimetics for colorimetric detection of H2O2. Rsc Adv. 2016;6(21):17483–93. https://doi.org/10.1039/c6ra00368k.

  37. Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, Wang T, Feng J, Yang D, Perrett S, Yan X. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol. 2007;2(9):577–83. https://doi.org/10.1038/nnano.2007.260.

    Article  CAS  PubMed  Google Scholar 

  38. Dong Y-l, Zhang H-g, Rahman ZU, Su L, Chen X-j, Hu J, Chen X-g. Graphene oxide-Fe3O4 magnetic nanocomposites with peroxidase-like activity for colorimetric detection of glucose. Nanoscale. 2012;4(13):3969–76. https://doi.org/10.1039/c2nr12109c.

    Article  CAS  PubMed  Google Scholar 

  39. Guo Y, Deng L, Li J, Guo S, Wang E, Dong S. Hemin-graphene hybrid nanosheets with intrinsic peroxidase-like activity for label-free colorimetric detection of single-nucleotide polymorphism. ACS Nano. 2011;5(2):1282–90. https://doi.org/10.1021/nn1029586.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The project was financially supported by National Natural Science Foundation of China (82104121, 22134003, 81973280, 82173778), Shenzhen Science and Technology Program (KQTD20200820113045083), and Key Program of Natural Science Foundation of Shenzhen (JCYJ20200109113410174).

Author information

Authors and Affiliations

Authors

Contributions

JZ: methodology, software, data curation, writing—original draft. JP: conceptualization, formal analysis, writing—reviewing and editing. YL: writing—reviewing and editing. JY: methodology, writing—reviewing and editing. BY: project administration, writing—reviewing and editing, supervision.

Corresponding authors

Correspondence to Jiao Yang or Bangce Ye.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1161 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, J., Pan, J., Li, Y. et al. Enzyme-nanozyme cascade colorimetric sensor platform: a sensitive method for detecting human serum creatinine. Anal Bioanal Chem 414, 6271–6280 (2022). https://doi.org/10.1007/s00216-022-04199-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-022-04199-w

Keywords

Navigation