Skip to main content

Advertisement

Log in

Sensitive naked-eye detection of telomerase activity based on exponential amplification reaction and lateral flow assay

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Telomerase is a promising diagnostic and prognostic biomarker for cancers. Sensitive, simple, and reliable telomerase activity detection is vital for cancer diagnosis. Herein, we developed an ultrasensitive visualized assay for telomerase activity that combined the exponential amplification reaction (EXPAR) and lateral flow assay for easy and quick signal readout, which we termed as a lateral flow readout-EXPAR (LFR-EXPAR) assay. In the LFR-EXPAR assay, telomerase elongation products initiate the exponential amplification reaction, the generated trigger hybridizes with the reporter to form the recognition site of the nicking enzyme, and the nicking enzyme cuts the reporter strand. The degradation of the reporter can be detected with a universal lateral flow dipstick and read out with the naked eye. After conducting a series of proof-of-concept investigations, the LFR-EXPAR assay was found to achieve a sensitivity comparable to that of a TRAP (telomere repeat amplification protocol) assay. The LFR-EXPAR assay can be used to realize ultrasensitive and point-of-care detection of telomerase without requiring specialized instruments, holding great promise for early cancer diagnosis.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Jiang J, Wang Y, Susac L, Chan H, Basu R, Zhou ZH, et al. Structure of telomerase with telomeric DNA. Cell. 2018;173(5):1179-90 e13.

    Article  CAS  Google Scholar 

  2. Shay JW, Wright WE. Telomeres and telomerase: three decades of progress. Nat Rev Genet. 2019;20(5):299–309.

    Article  CAS  Google Scholar 

  3. Chen CY, Wang Q, Liu JQ, Hao YH, Tan Z. Contribution of telomere G-quadruplex stabilization to the inhibition of telomerase-mediated telomere extension by chemical ligands. J Am Chem Soc. 2011;133(38):15036–44.

    Article  CAS  Google Scholar 

  4. Shay JW, Zou Y, Hiyama E, Wright WE. Telomerase and cancer. Hum Mol Genet. 2001;10(7):677–85.

    Article  CAS  Google Scholar 

  5. Greider CW, Blackburn EH. Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell. 1985;43(2 Pt 1):405–13.

    Article  CAS  Google Scholar 

  6. Kim NW, Piatyszek MA, Prowse KR, Harley CB, West MD, Ho PL, et al. Specific association of human telomerase activity with immortal cells and cancer. Science (New York, NY). 1994;266(5193):2011–5.

    Article  CAS  Google Scholar 

  7. Ludlow AT, Robin JD, Sayed M, Litterst CM, Shelton DN, Shay JW, et al. Quantitative telomerase enzyme activity determination using droplet digital PCR with single cell resolution. Nucleic Acids Res. 2014;42(13): e104.

    Article  CAS  Google Scholar 

  8. Tian L, Weizmann Y. Real-time detection of telomerase activity using the exponential isothermal amplification of telomere repeat assay. J Am Chem Soc. 2013;135(5):1661–4.

    Article  CAS  Google Scholar 

  9. Wang LJ, Zhang Y, Zhang CY. Ultrasensitive detection of telomerase activity at the single-cell level. Anal Chem. 2013;85(23):11509–17.

    Article  CAS  Google Scholar 

  10. Zhang Y, Wang LJ, Zhang CY. Highly sensitive detection of telomerase using a telomere-triggered isothermal exponential amplification-based DNAzyme biosensor. Chem Commun. 2014;50(15):1909–11.

    Article  CAS  Google Scholar 

  11. Li X, Cui Y, Du Y, Tang A, Kong D. Label-free telomerase detection in single cell using a five-base telomerase product-triggered exponential rolling circle amplification strategy. ACS sensors. 2019;4(4):1090–6.

    Article  CAS  Google Scholar 

  12. Shi M, Zheng J, Liu C, Tan G, Qing Z, Yang S, et al. SERS assay of telomerase activity at single-cell level and colon cancer tissues via quadratic signal amplification. Biosens Bioelectron. 2016;77:673–80.

    Article  CAS  Google Scholar 

  13. Ning Xu, Panpan Zhu, Jing Liang, Li Liu, Wen Zhang, Xiaoli Li, Yong He. Label-free Raman spectroscopy monitoring of cytotoxic response induced by a telomerase inhibitor. Sens Actuators B Chem. 2019;293:1–10. https://doi.org/10.1016/j.snb.2019.03.146.

  14. Yi Z, Wang HB, Chen K, Gao Q, Tang H, Yu RQ, et al. A novel electrochemical biosensor for sensitive detection of telomerase activity based on structure-switching DNA. Biosens Bioelectron. 2014;53:310–5.

    Article  CAS  Google Scholar 

  15. Wang L, Meng T, Liang L, Sun J, Wu S, Wang H, Yang X, Zhang Y. Fabrication of amine-functionalized metal-organic frameworks with embedded palladium nanoparticles for highly sensitive electrochemical detection of telomerase activity. Sensors and Actuators B: Chemical. 2019;278:133–9.

    Article  CAS  Google Scholar 

  16. Wang Y, Yang L, Li B, Yang CJ, Jin Y. Point-of-care assay of telomerase activity at single-cell level via gas pressure readout. Anal Chem. 2017;89(16):8311–8.

    Article  CAS  Google Scholar 

  17. Ma Y, Mao G, Wu G, He Z, Huang W. Magnetic bead-enzyme assemble for triple-parameter telomerase detection at single-cell level. Anal Bioanal Chem. 2020;412(22):5283–9.

    Article  CAS  Google Scholar 

  18. Liu C, Zhang S, Li X, Xue Q, Jiang W. Multi-code magnetic beads based on DNAzyme-mediated double-cycling amplification for a point-of-care assay of telomerase activity. Analyst. 2019;144(14):4241–9.

    Article  CAS  Google Scholar 

  19. Zhu J, Yang B, Liu W, Li B, Jin Y. In-situ generation of potassium ferricyanide for label-free and enzyme-free chemiluminescence detection of telomerase activity. Anal Chim Acta. 2021;1165: 338550.

    Article  CAS  Google Scholar 

  20. Wang D, Guo R, Wei Y, Zhang Y, Zhao X, Xu Z. Sensitive multicolor visual detection of telomerase activity based on catalytic hairpin assembly and etching of Au nanorods. Biosens Bioelectron. 2018;122:247–53.

    Article  CAS  Google Scholar 

  21. Wang J, Zhang J, Li T, Shen R, Li G, Ling L. Strand displacement amplification-coupled dynamic light scattering method to detect urinary telomerase for non-invasive detection of bladder cancer. Biosens Bioelectron. 2019;131:143–8.

    Article  CAS  Google Scholar 

  22. Wang Y, Shi L, Zhu J, Li B, Jin Y. Visual and sensitive detection of telomerase activity via hydrogen peroxide test strip. Biosens Bioelectron. 2020;156: 112132.

    Article  CAS  Google Scholar 

  23. Chen X, Deng Y, Cao G, Liu X, Gu T, Feng R, et al. An ultrasensitive and point-of-care sensor for the telomerase activity detection. Anal Chim Acta. 2021;1146:61–9.

    Article  CAS  Google Scholar 

  24. Gootenberg JS, Abudayyeh OO, Kellner MJ, Joung J, Collins JJ, Zhang F. Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6. Science (New York, NY). 2018;360(6387):439–44.

    Article  CAS  Google Scholar 

  25. Broughton JP, Deng X, Yu G, Fasching CL, Servellita V, Singh J, et al. CRISPR-Cas12-based detection of SARS-CoV-2. Nat Biotechnol. 2020;38(7):870–4.

    Article  CAS  Google Scholar 

  26. Reid MS, Le XC, Zhang H. Exponential isothermal amplification of nucleic acids and assays for proteins, cells, small molecules, and enzyme activities: an EXPAR example. Angew Chem. 2018;57(37):11856–66.

    Article  CAS  Google Scholar 

  27. Van Ness J, Van Ness LK, Galas DJ. Isothermal reactions for the amplification of oligonucleotides. Proc Natl Acad Sci USA. 2003;100(8):4504–9.

    Article  Google Scholar 

  28. Wang K, Liu CY, Zhou LY, Wang JX, Wang M, Zhao B, et al. APF lncRNA regulates autophagy and myocardial infarction by targeting miR-188-3p. Nat Commun. 2015;6:6779.

    Article  CAS  Google Scholar 

  29. Gao XQ, Zhang YH, Liu F, Ponnusamy M, Zhao XM, Zhou LY, et al. The piRNA CHAPIR regulates cardiac hypertrophy by controlling METTL3-dependent N(6)-methyladenosine methylation of Parp10 mRNA. Nat Cell Biol. 2020;22(11):1319–31.

    Article  CAS  Google Scholar 

  30. Burger AM. Standard TRAP assay. Methods in molecular biology (Clifton, NJ). 2002;191:109–24.

    CAS  Google Scholar 

  31. Chen Z, Zheng KW, Hao YH, Tan Z. Reduced or diminished stabilization of the telomere G-quadruplex and inhibition of telomerase by small chemical ligands under molecular crowding condition. J Am Chem Soc. 2009;131(30):10430–8.

    Article  CAS  Google Scholar 

  32. Reid MS, Paliwoda RE, Zhang H, Le XC. Reduction of background generated from template-template hybridizations in the exponential amplification reaction. Anal Chem. 2018;90(18):11033–9.

    Article  CAS  Google Scholar 

  33. Rey EG, O’Dell D, Mehta S, Erickson D. Mitigating the hook effect in lateral flow sandwich immunoassays using real-time reaction kinetics. Anal Chem. 2017;89(9):5095–100.

    Article  CAS  Google Scholar 

  34. Roskos K, Hickerson AI, Lu HW, Ferguson TM, Shinde DN, Klaue Y, et al. Simple system for isothermal DNA amplification coupled to lateral flow detection. PLoS ONE. 2013;8(7): e69355.

    Article  CAS  Google Scholar 

  35. Nie J, Zhang DW, Tie C, Zhou YL, Zhang XX. G-quadruplex based two-stage isothermal exponential amplification reaction for label-free DNA colorimetric detection. Biosens Bioelectron. 2014;56:237–42.

    Article  CAS  Google Scholar 

  36. Cheng M, Xiong E, Tian T, Zhu D, Ju HQ, Zhou X. A CRISPR-driven colorimetric code platform for highly accurate telomerase activity assay. Biosens Bioelectron. 2021;172: 112749.

    Article  CAS  Google Scholar 

  37. Wang WJ, Li JJ, Rui K, Gai PP, Zhang JR, Zhu JJ. Sensitive electrochemical detection of telomerase activity using spherical nucleic acids gold nanoparticles triggered mimic-hybridization chain reaction enzyme-free dual signal amplification. Anal Chem. 2015;87(5):3019–26.

    Article  CAS  Google Scholar 

  38. Aix E, Gutierrez-Gutierrez O, Sanchez-Ferrer C, Aguado T, Flores I. Postnatal telomere dysfunction induces cardiomyocyte cell-cycle arrest through p21 activation. J Cell Biol. 2016;213(5):571–83.

    Article  CAS  Google Scholar 

  39. Sun L, Zhao Q, Liu X, Pan Y, Gao Y, Yang J, et al. Enzyme-mimicking accelerated signal enhancement for visually multiplexed quantitation of telomerase activity. Chem Commun. 2020;56(51):6969–72.

    Article  CAS  Google Scholar 

  40. Yang H, Liu A, Wei M, Liu Y, Lv B, Wei W, et al. Visual, label-free telomerase activity monitor via enzymatic etching of gold nanorods. Anal Chem. 2017;89(22):12094–100.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Yan Zhang (College of Chemistry, Shandong Normal University, Jinan 250014, China) and Qinfeng Xu (School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China) for insightful discussion and suggestions.

Funding

This work was supported by the National Natural Science Foundation of China (NSFC) (grant number 32000866), the Major Research Program of the National Natural Science Foundation of China (grant number 91849209), and the Natural Science Foundation of Shandong Province (grant number ZR201910210189).

All animal experiments were performed in compliance with relevant laws or guidelines. All animal experiments followed the institutional guidelines of Qingdao University. The Ethics Committee of Qingdao University approved our studies. Informed consent was obtained from all participants included in the study.

Author information

Authors and Affiliations

Authors

Contributions

Xue-Ru Cheng: methodology, investigation, validation, formal analysis, writing—original draft, and writing—review and editing. Cui-yun Liu: formal analysis, methodology, writing—review and editing. Fei Wang: formal analysis, methodology, writing—review and editing. Jing Li: formal analysis, methodology, writing—review and editing. Chan Shan: formal analysis, methodology, writing—review and editing. Kun Wang: formal analysis, methodology, writing—review and editing. Yin Wang: conceptualization, data curation, formal analysis, writing—review and editing. Pei-Feng Li: conceptualization, data curation, funding acquisition, formal analysis, writing—review and editing, supervision. Xin-min Li: conceptualization, methodology, funding acquisition, writing—original draft, writing—review and editing, project administration, supervision.

Corresponding authors

Correspondence to Yin Wang, Pei-Feng Li or Xin-Min Li.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 1006 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, XR., Wang, F., Liu, Cy. et al. Sensitive naked-eye detection of telomerase activity based on exponential amplification reaction and lateral flow assay. Anal Bioanal Chem 414, 6139–6147 (2022). https://doi.org/10.1007/s00216-022-04179-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-022-04179-0

Keywords

Navigation