Skip to main content
Log in

Metabolomics with multi-block modelling of mass spectrometry and nuclear magnetic resonance in order to discriminate Haplosclerida marine sponges

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A comprehensive metabolomic strategy, integrating 1H NMR and MS-based multi-block modelling in conjunction with multi-informational molecular networking, has been developed to discriminate sponges of the order Haplosclerida, well known for being taxonomically contentious. An in-house collection of 33 marine sponge samples belonging to three families (Callyspongiidae, Chalinidae, Petrosiidae) and four different genera (Callyspongia, Haliclona, Petrosia, Xestospongia) was investigated using LC–MS/MS, molecular networking, and the annotations processes combined with NMR data and multivariate statistical modelling. The combination of MS and NMR data into supervised multivariate models led to the discrimination of, out of the four genera, three groups based on the presence of metabolites, not necessarily previously described in the Haplosclerida order. Although these metabolomic methods have already been applied separately, it is the first time that a multi-block untargeted approach using MS and NMR has been combined with molecular networking and statistically analyzed, pointing out the pros and cons of this strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The raw data files and preprocessed peak lists related to the LC–MS/MS analysis were deposited on the public MassIVE repository under the accession number: MSV000088423. The molecular network could be accessed on this link: https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=3012a113c5544344a8e31a156259234f.

References

  1. Letertre MPM, Dervilly G, Giraudeau P. Combined nuclear magnetic resonance spectroscopy and mass spectrometry approaches for metabolomics. Anal Chem. 2021;93(1):500–18.

    Article  CAS  PubMed  Google Scholar 

  2. Deng L, Gu H, Zhu J, Nagana Gowda GA, Djukovic D, Chiorean EG, et al. Combining NMR and LC/MS using backward variable elimination: metabolomics analysis of colorectal cancer, polyps, and healthy controls. Anal Chem. 2016;88(16):7975–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wolfender J-L, Nuzillard J-M, van der Hooft JJJ, Renault J-H, Bertrand S. Accelerating metabolite identification in natural product research: toward an ideal combination of liquid chromatography–high-resolution tandem mass spectrometry and NMR profiling, in silico databases, and chemometrics. Anal Chem. 2019;91(1):704–42.

    Article  CAS  PubMed  Google Scholar 

  4. Keifer PA, Koker MES, Schwartz RE, Hughes RG Jr, Rittschof DR KL. Presented at the 26th Interscience Conference on Antimicrobial Agents and Chemotherapy, 1986.

  5. Bingol K, Bruschweiler-Li L, Yu C, Somogyi A, Zhang F, Brüschweiler R. Metabolomics beyond spectroscopic databases: a combined MS/NMR strategy for the rapid identification of new metabolites in complex mixtures. Anal Chem. 2015;87(7):3864–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bingol K, Brüschweiler R. NMR/MS translator for the enhanced simultaneous analysis of metabolomics mixtures by NMR spectroscopy and mass spectrometry: application to human urine. J Prot Res. 2015;14(6):2642–8.

    Article  CAS  Google Scholar 

  7. Wang C, Zhang B, Timári I, Somogyi Á, Li D-W, Adcox HE, et al. Accurate and efficient determination of unknown metabolites in metabolomics by NMR-based molecular motif identification. Anal Chem. 2019;91(24):15686–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wang C, He L, Li D-W, Bruschweiler-Li L, Marshall AG, Brüschweiler R. Accurate identification of unknown and known metabolic mixture components by combining 3D NMR with fourier transform ion cyclotron resonance tandem mass spectrometry. J Prot Res. 2017;16(10):3774–86.

    Article  CAS  Google Scholar 

  9. Edison AS, Colonna M, Gouveia GJ, Holderman NR, Judge MT, Shen X, et al. NMR: unique strengths that enhance modern metabolomics research. Anal Chem. 2021;93(1):478–99.

    Article  CAS  PubMed  Google Scholar 

  10. Mishra P, Roger J-M, Jouan-Rimbaud-Bouveresse D, Biancolillo A, Marini F, Nordon A, et al. Recent trends in multi-block data analysis in chemometrics for multi-source data integration. TrAC Trends Anal Chem. 2021;137:116206.

    Article  CAS  Google Scholar 

  11. Li X, Luo H, Huang T, Xu L, Shi X, Hu K. Statistically correlating NMR spectra and LC-MS data to facilitate the identification of individual metabolites in metabolomics mixtures. Anal Bioanal Chem. 2019;411(7):1301–9.

    Article  CAS  PubMed  Google Scholar 

  12. Fox Ramos AE, Evanno L, Poupon E, Champy P, Beniddir MA. Natural products targeting strategies involving molecular networking: different manners, one goal. Nat Prod Rep. 2019;36(7):960–80.

    Article  CAS  PubMed  Google Scholar 

  13. Beniddir MA, Kang KB, Genta-Jouve G, Huber F, Rogers S, van der Hooft JJJ. Advances in decomposing complex metabolite mixtures using substructure- and network-based computational metabolomics approaches. Nat Prod Rep. 2021;38(11):1967–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Duperron S, Beniddir MA, Durand S, Longeon A, Duval C, Gros O, et al. New benthic cyanobacteria from guadeloupe mangroves as producers of antimicrobials. Mar Drugs. 2019;18(1):16.

    Article  PubMed Central  CAS  Google Scholar 

  15. Carroll AR, Copp BR, Davis RA, Keyzers RA, Prinsep MR. Marine natural products. Nat Prod Rep. 2020;37(2):175–223.

    Article  PubMed  Google Scholar 

  16. Hooper JNA. Van Soest RWM in Systema Porifera 2002, Kluwer Academic /Plenum Publishers, New York.

  17. Cárdenas P, Pérez T, Boury-Esnault N. Sponge systematics facing new challenges. In: Becerro MA, Uriz MJ, Maldonado M, Turon X, editors. Adv Mar Biol, Academic Press. 2012;61:79–209.

  18. de Voogd NJ, Alvarez B, Boury-Esnault N, Carballo JL, Cárdenas P, Díaz M-C, Dohrmann M, Downey R, Hajdu E, Hooper JNA, Kelly M, Klautau M, Manconi R, Morrow CC, Pisera AB, Ríos P, Rützler K, Schönberg C, Vacelet J, van Soest RWM. World Porifera Database. 2021. Accessed at http://www.marinespecies.org/porifera on 2021–11–24. https://doi.org/10.14284/359.

  19. McCormack GP, Erpenbeck D, Van Soest RWM. Major discrepancy between phylogenetic hypotheses based on molecular and morphological criteria within the Order Haplosclerida (phylum Porifera: class Demospongiae). J Zool Sys Evol Res. 2002;40(4):237–40.

    Article  Google Scholar 

  20. Redmond NE, McCormack GP. Large expansion segments in 18S rDNA support a new sponge clade (class Demospongiae, order Haplosclerida). Mol Phylogenetics Evol. 2008;47(3):1090–9.

    Article  CAS  Google Scholar 

  21. Redmond NE, Raleigh J, van Soest RWM, Kelly M, Travers SAA, Bradshaw B, et al. Phylogenetic relationships of the marine haplosclerida (phylum Porifera) employing ribosomal (28S rRNA) and mitochondrial (cox1, nad1) gene sequence data. PLoS One. 2011;6(9):e24344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tribalat M-A, Marra MV, McCormack GP, Thomas OP. Does the chemical diversity of the order haplosclerida (phylum Porifera: class Demospongia) fit with current taxonomic classification? Planta Med. 2016;82(09/10):843–56.

    Article  CAS  PubMed  Google Scholar 

  23. Morrow C, Cárdenas P, Boury-Esnault N, Picton B, McCormack G, Van Soest R, et al. Integrating morphological and molecular taxonomy with the revised concept of Stelligeridae (Porifera: Demospongiae). Zool J Linn Soc. 2019;187(1):31–81.

    Article  Google Scholar 

  24. Chambers MC, Maclean B, Burke R, Amodei D, Ruderman DL, Neumann S, et al. A cross-platform toolkit for mass spectrometry and proteomics. Nat Biotechnol. 2012;30:918–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pluskal T, Castillo S, Villar-Briones A, Orešič M. MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinform. 2010;11(1):395.

    Article  CAS  Google Scholar 

  26. Myers OD, Sumner SJ, Li S, Barnes S, Du X. One step forward for reducing false positive and false negative compound identifications from mass spectrometry metabolomics data: new algorithms for constructing extracted ion chromatograms and detecting chromatographic peaks. Anal Chem. 2017;89(17):8696–703.

    Article  CAS  PubMed  Google Scholar 

  27. Lagarde A, Mambu L, Mai P-Y, Champavier Y, Stigliani J-L, Beniddir MA, et al. Chlorinated bianthrones from the cyanolichen Nephroma laevigatum. Fitoterapia. 2021;149:104811.

    Article  CAS  PubMed  Google Scholar 

  28. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rutz A, Dounoue-Kubo M, Ollivier S, Bisson J, Bagheri M, Saesong T, et al. Taxonomically informed scoring enhances confidence in natural products annotation. Front Plant Sci. 2019;10:1329.

  30. Allard P-M, Péresse T, Bisson J, Gindro K, Marcourt L, Pham VC, et al. Integration of molecular networking and in-silico MS/MS fragmentation for natural products dereplication. Anal Chem. 2016;88(6):3317–23.

    Article  CAS  PubMed  Google Scholar 

  31. MarinLit. http://pubs.rsc.org/marinlit/ Accessed Nov 2021.

  32. Qannari EM, Courcoux P, Vigneau E. Common components and specific weights analysis performed on preference data. Food Qual Pref. 2001;12(5):365–8.

    Article  Google Scholar 

  33. Wehrens R, van der Linden WE. Bootstrapping principal component regression models. J Chemometr. 1997;11(2):157–71.

    Article  CAS  Google Scholar 

  34. Nothias L-F, Petras D, Schmid R, Dührkop K, Rainer J, Sarvepalli A, et al. Feature-based molecular networking in the GNPS analysis environment. Nat Methods. 2020;17(9):905–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang M, Carver JJ, Phelan VV, Sanchez LM, Garg N, Peng Y, et al. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat Biotechnol. 2016;34(8):828–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Allen F, Pon A, Wilson M, Greiner R, Wishart D. CFM-ID: a web server for annotation, spectrum prediction and metabolite identification from tandem mass spectra. Nucleic Acids Res. 2014;42:W94–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rodríguez AD, Cóbar OM, Padilla OL. The calyxolanes: new 1,3-diphenylbutanoid metabolites isolated from the caribbean marine sponge Calyx podatypa. J Nat Prod. 1997;60(9):915–7.

    Article  PubMed  Google Scholar 

  38. Casapullo A, Minale L, Zollo F. Paniceins and related sesquiterpenoids from the mediterranean sponge Reniera fulva. J Nat Prod. 1993;56(4):527–33.

    Article  CAS  PubMed  Google Scholar 

  39. Cimino G, de Stefano S, Minale L. Methyltrans-monocyclofarnesate from the sponge Halichondria panicea. Experientia. 1973;29(9):1063–4.

    Article  CAS  Google Scholar 

  40. Mokhlesi A, Hartmann R, Kurtán T, Weber H, Lin W, Chaidir C, et al. New 2-methoxy acetylenic acids and pyrazole alkaloids from the marine sponge Cinachyrella sp. Mar Drugs. 2017;15(11):356.

    Article  PubMed Central  CAS  Google Scholar 

  41. Rudi A, Talpir R, Kashman Y, Benayahu Y, Schleyer M. Four new C16 1,2-dioxene-polyketides from the sponge Plakortis aff simplex. J Nat Prod. 1993;56(12):2178–82.

    Article  CAS  PubMed  Google Scholar 

  42. Patil AD, Freyer AJ, Bean MF, Carte BK, Westley JW, Johnson RK, et al. The plakortones, novel bicyclic lactones from the sponge Plakortis halichondrioides: activators of cardiac SR-Ca2+-pumping ATPase. Tetrahedron. 1996;52(2):377–94.

    Article  CAS  Google Scholar 

  43. Mitome H, Shirato N, Hoshino A, Miyaoka H, Yamada Y, Van Soest RWM. New polyhydroxylated sterols stylisterols A-C and a novel 5,19-cyclosterol hatomasterol from the Okinawan marine sponge Stylissa sp. Steroids. 2005;70(1):63–70.

    Article  CAS  PubMed  Google Scholar 

  44. Kong F, Andersen RJ, Allen TM. Ingamines A and B, new cytotoxic alkaloids from the marine sponge Xestospongia ingens. Tetrahedron. 1994;50(21):6137–44.

    Article  CAS  Google Scholar 

  45. Kong F, Andersen RJ. Ingenamine alkaloids isolated from the sponge Xestospongia ingens: structures and absolute configurations. Tetrahedron. 1995;51(10):2895–906.

    Article  CAS  Google Scholar 

  46. Cimino G, De Luca P, De Stefano S, Minale L. Disidein, a pentacyclic sesterterpene condensed with an hydroxyhydroquinone moiety, from the sponge Disidea pallescens. Tetrahedron. 1975;31(3):271–5.

    Article  CAS  Google Scholar 

  47. Cimino G, De Stefano S, Minale L. Polyprenyl derivatives from the sponge Ircinia spinosula: 2-polyprenylbenzoquinones, 2-polyprenylbenzoquinols, prenylated furans and a C-31 difuranoterpene. Tetrahedron. 1972;28(5):1315–24.

    Article  CAS  Google Scholar 

  48. Kim D-K, Lim YJ, Kim JS, Park JH, Kim ND, Im KS, et al. A cyclitol derivative as a replication inhibitor from the marine sponge Petrosia sp. J Nat Prod. 1999;62(5):773–6.

    Article  CAS  PubMed  Google Scholar 

  49. Liu Y, Jung JH, Xu T, Long L, Lin X, Yin H, et al. New cyclitol derivative from a sponge Sarcotragus species. Nat Prod Res. 2011;25(6):648–52.

    Article  CAS  PubMed  Google Scholar 

  50. Cheng Z, Liu D, de Voogd NJ, Proksch P, Lin W. New sterol derivatives from the marine sponge Xestospongia sp. Helv Chim Acta. 2016;99(8):588–96.

    Article  CAS  Google Scholar 

  51. Guo Y, Gavagnin M, Salierno C, Cimino G. Further petroformynes from both atlantic and mediterranean populations of the sponge Petrosia ficiformis. J Nat Prod. 1998;61(3):333–7.

    Article  CAS  PubMed  Google Scholar 

  52. Juan Y-S, Lee C-C, Tsao C-W, Lu M-C, El-Shazly M, Shih H-C, et al. Structure elucidation and cytotoxic evaluation of new polyacetylenes from a marine sponge Petrosia sp. Int J Mol Sci. 2014;15(9):16511–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Takekawa Y, Matsunaga S, van Soest RWM, Fusetani N. Amphimedosides, 3-alkylpyridine glycosides from a marine sponge Amphimedon sp. J Nat Prod. 2006;69(10):1503–5.

    Article  CAS  PubMed  Google Scholar 

  54. Masamitsu O, Saori A, Akira T, Hiyoshizo K, Yoshiyasu F, Kozo S. Bioactive polyacetylenes from the marine sponge Petrosia sp. Chem Lett. 1994;23(1):89–92.

    Article  Google Scholar 

  55. Yu S, Deng Z, Proksch P, Lin W. Oculatol, oculatolide, and a-nor sterols from the sponge Haliclona oculata. J Nat Prod. 2006;69(9):1330–4.

    Article  CAS  PubMed  Google Scholar 

  56. Blaženović I, Kind T, Ji J, Fiehn O. Software tools and approaches for compound identification of LC-MS/MS data in metabolomics. Metabolites. 2018;8(2):31.

    Article  PubMed Central  CAS  Google Scholar 

  57. Reher R, Kim HW, Zhang C, Mao HH, Wang M, Nothias L-F, et al. A convolutional neural network-based approach for the rapid annotation of molecularly diverse natural products. J Am Chem Soc. 2020;142(9):4114–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Klein-Júnior LC, Cretton S, Allard P-M, Genta-Jouve G, Passos CS, Salton J, et al. Targeted isolation of monoterpene indole alkaloids from Palicourea sessilis. J Nat Prod. 2017;80(11):3032–7.

    Article  PubMed  CAS  Google Scholar 

  59. Toth SI, Schmitz FJ. Two new cytotoxic peroxide-containing acids from a new guinea sponge, Callyspongia sp. J Nat Prod. 1994;57(1):123–7.

    Article  CAS  PubMed  Google Scholar 

  60. Galitz A, Nakao Y, Schupp PJ, Wörheide G, Erpenbeck D. A soft spot for chemistry–current taxonomic and evolutionary implications of sponge secondary metabolite distribution. Mar Drugs. 2021;19(8):448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Professor Jean-Claude Braekman for using his sponge extract collection given to the Museum National d’Histoire Naturelle.

Funding

This study received financial support from the Muséum National d’Histoire Naturelle de Paris (ATM) and CNRS-LIA FVLC-TEL.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mehdi A. Beniddir, Laurence Le Moyec or Marie-Lise Bourguet-Kondracki.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 385 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beniddir, M.A., Le Moyec, L., Triba, M.N. et al. Metabolomics with multi-block modelling of mass spectrometry and nuclear magnetic resonance in order to discriminate Haplosclerida marine sponges. Anal Bioanal Chem 414, 5929–5942 (2022). https://doi.org/10.1007/s00216-022-04158-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-022-04158-5

Keywords

Navigation