Skip to main content
Log in

DNAzyme signal amplification based on Au@Ag core–shell nanorods for highly sensitive SERS sensing miRNA-21

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Here, we developed a surface-enhanced Raman scattering (SERS) sensor based on functionalized Au@Ag core–shell nanorods (Au@Ag NRs) and cascade DNAzyme amplifier (CSA) for sensitive and accurate determination of microRNA-21 (miRNA-21). The as-prepared SERS nanoprobes were composed of a thiol-modification hairpin probe (HP2)–functionalized Au@Ag NRs and hairpin DNAzyme (HP1-Dz). Compared with original gold nanorods, the silver shell caused an enhancement of plasmonic properties, resulting in a significant enhancement of Raman signals. In the presence of target miRNAs, the hairpin construction of HP1-Dz changed due to DNA/RNA hybridization; subsequently, the DNAzyme-catalyzed cleaving process changed, and the Raman signals of the SERS nanoprobes gradually “turned off” with time elapse because of the dissociation of the Raman reporter from the surface of Au@Ag NRs. Hence, based on this principle, the proposed SERS sensor exhibited good linearity in the range 0.5 fM to 10 nM for miRNA-21 detection with a detection limit (LOD) of 0.5 fM. The proposed SERS platform has potential application in quantitative and precise detection of miRNA-21 in human serum.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mallory AC, Vaucheret H. Functions of microRNAs and related small RNA in plants. Nat Genet. 2006;38:S31–6.

    Article  CAS  Google Scholar 

  2. Chinnappan R, Mohammed R, Yaqinuddin A, Abu-Salah K, Zourob M. Highly sensitive multiplex detection of microRNA by competitive DNA strand displacement fluorescence assay. Talanta. 2019;200:487–93.

    Article  CAS  Google Scholar 

  3. Zhou W, Tian YF, Yin BC, Ye BC. Simultaneous surface-enhanced Raman spectroscopy detection of multiplexed microRNA biomarkers. Anal Chem. 2017;89:6120–8.

    Article  CAS  Google Scholar 

  4. Zheng J, Ma DD, Shi ML, Bai JH, Li YH, Yang JF, et al. A New Enzyme-free quadratic SERS signal amplification approach for circulating microRNA detection in human serum. Chem Commun. 2015;51:16271–4.

    Article  CAS  Google Scholar 

  5. Qiu X, Wang P, Cao ZJ. Hybridization chain reaction modulation DNA-hosted silver nanoclusters for fluorescent identification of single nucleotide polymorphisms in the let-7 miRNA family. Biosens Bioelecron. 2014;60:351–7.

    Article  CAS  Google Scholar 

  6. Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT, et al. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res. 2005;33:e179.

    Article  Google Scholar 

  7. Valoczi A, Hornyik C, Varga N, Burgyan J, Kauppinen S, Havelda Z. Sensitive and specific detection of microRNAs by northern blot analysis using LNA-modified oligonucleotide probes. Nucleic Acids Res. 2004;32:e175.

    Article  Google Scholar 

  8. Nelson PT, Baldwin DA, Scearce LM, Oberholtzer JC, Tobias JW, Mourelatos Z. Microarray-based, high-throughput gene expression profiling of microRNAs. Nat Methods. 2004;1:155–61.

    Article  CAS  Google Scholar 

  9. Laing S, Gracie K, Faulds K. Multiplex in vitro detection using SERS. Chem Soc Rev. 2016;45:1901–18.

    Article  CAS  Google Scholar 

  10. Etchegoin PG, Lacharmoise PD, Le Ru EC. Influence of photostability on single-molecule surface enhanced Raman scattering enhancement factors. Anal Chem. 2009;81:682–8.

    Article  CAS  Google Scholar 

  11. Fan XC, Hao Q, Li MZ, Zhang XY, Yang XZ, Mei YF, et al. Hotspots on the move: active molecular enrichment by hierarchically structured micromotors for ultrasensitive SERS sensing. ACS Appl Mater Inter. 2020;12:28783–91.

    Article  CAS  Google Scholar 

  12. Zhou DH, Zeng LW, Pan JF, Li Q, Chen JH. Autocatalytic DNA circuit for Hg2+ detection with high sensitivity and selectivity based on exonuclease III and G-quadruplex DNAzyme. Talanta. 2020;207:120258.

    Article  CAS  Google Scholar 

  13. Du SS, Su MK, Jiang YF, Yu FF, Xu Y, Lou XF, et al. Direct discrimination of edible oil type, oxidation, and adulteration by liquid interfacial surface-enhanced Raman spectroscopy. ACS Sensors. 2019;4:1798–805.

    Article  CAS  Google Scholar 

  14. Zhou H, Zhang J, Li B, Liu J, Chen HY. Dual-mode SERS and electrochemical detection of miRNA based on popcorn-like gold nanofilms and toehold-mediated strand displacement amplification reaction. Anal Chem. 2021;93(15):6120–7.

    Article  CAS  Google Scholar 

  15. Wang SF, Wu CJ, Luo JJ, Luo XX, Yuan R, Yang X. Target-triggered configuration change of DNA tetrahedron for SERS assay of microRNA 122. Microchim Acta. 2020;187:460.

    Article  CAS  Google Scholar 

  16. Lee T, Wi JS, Oh A, Na HK, Lee JJ, Lee K, et al. Highly robust, uniform and ultra-sensitive surface-enhanced Raman scattering substrates for microRNA detection fabricated by using silver nanostructures grown in gold nanobowls. Nanoscale. 2018;10:3680–7.

    Article  CAS  Google Scholar 

  17. Luo W, Wu CJ, Huang SQ, Luo XL, Yuan R, Yang X. Liquid phase interfacial surface-enhanced Raman scattering platform for ratiometric detection of microRNA 155. Anal Chem. 2020;92:15573–8.

    Article  CAS  Google Scholar 

  18. Chen K, Wu L, Jiang XC, Lu ZC, Han HY. Target triggered self-assembly of Au nanoparticles for amplified detection of Bacillus thuringiensis transgenic sequence using SERS. Biosens Bioelecron. 2014;62:196–200.

    Article  CAS  Google Scholar 

  19. Xu W, Zhao AW, Zuo FT, Khan R, Hussain HMJ, Li J. A highly sensitive DNAzyme-based SERS biosensor for quantitative detection of lead ion in human serum. Anal Bioanal Chem. 2020;412:4565–74.

    Article  CAS  Google Scholar 

  20. Chang J, Zhang AM, Huang ZC, Chen YS, Zhang Q, Cui DX. Monodisperse Au@Ag core-shell nanoparticles with ultrasensitive SERS-activity for rapid identification and Raman imaging of living cancer cells. Talanta. 2019;198:45–54.

    Article  CAS  Google Scholar 

  21. Xu W, Zhao AW, Zuo FT, Khan R, Hussain HMJ, Chang JG. Au@Ag core-shell nanoparticles for microRNA-21 determination based on duplex-specific nuclease signal amplification and surface-enhanced Raman scattering. Microchim Acta. 2020;187:384.

    Article  CAS  Google Scholar 

  22. Sun YY, Li W, Zhao LQ, Li FY, Xie YF, Yao WR, et al. Simultaneous SERS detection of illegal food additives rhodamine B and basic orange II based on Au nanorod-incorporated melamine foam. Food Chem. 2021;357:129741.

    Article  CAS  Google Scholar 

  23. Nguyen L, Dass M, Ober MF, Besteiro LV, Wang ZMM, Nickel B, et al. Chiral assembly of gold-silver core-shell plasmonic nanorods on DNA origami with strong optical activity. ACS Nano. 2020;14:7454–61.

    Article  CAS  Google Scholar 

  24. Cui MR, Li XL, Xu JJ, Chen HY. Acid-switchable DNAzyme nanodevice for imaging multiple metal ions in living cells. ACS Appl Mater Inter. 2020;12:13005–12.

    Article  CAS  Google Scholar 

  25. Wang R, Xu XW, Li X, Zhang N, Jiang W. pH-responsive ZnO nanoprobe mediated DNAzyme signal amplification strategy for sensitive detection and live cell imaging of multiple microRNAs. Sensor Actuat B-Chem. 2019;293:93–9.

    Article  CAS  Google Scholar 

  26. Zhou YJ, Yu SS, Shang JH, Chen YY, Wang Q, Liu XQ, et al. Construction of an exonuclease III-propelled integrated DNAzyme amplifier for highly efficient microRNA detection and intracellular imaging with ultralow background. Anal Chem. 2020;92:15069–78.

    Article  CAS  Google Scholar 

  27. He WC, Li ST, Wang LZ, Zhu LJ, Zhang YZ, Luo YB, et al. AuNPs - DNAzyme molecular motor biosensor mediated by neighborhood click chemistry reactions for the ultrasensitive detection of microRNA-155. Sensor Actuat B-Chem. 2019;290:503–11.

    Article  CAS  Google Scholar 

  28. Tang LJ, Li S, Han F, Liu LQ, Xu LG, Ma W, et al. SERS-active Au@Ag nanorod dimers for ultrasensitive dopamine detection. Biosens Bioelecron. 2015;71:7–12.

    Article  CAS  Google Scholar 

  29. Wu L, Xiao XY, Chen K, Yin WM, Li Q, Wang P. Ultrasensitive SERS detection of Bacillus thuringiensis special gene based on Au@Ag NRs and magnetic beads. Biosens Bioelecron. 2017;92:321–7.

    Article  CAS  Google Scholar 

  30. Pang YF, Wang CW, Wang J, Sun ZW, Xiao R, Wang SQ. Fe3O4@Ag magnetic nanoparticles for microRNA capture and duplex-specific nuclease signal amplification based SERS detection in cancer cell. Biosens Bioelecron. 2016;79:574–80.

    Article  CAS  Google Scholar 

  31. Xi Q, Zhou DM, Kan YY, Ge J, Wu ZK, Yu RQ, et al. Highly sensitive and selective strategy for microRNA detection based on WS2 nanosheet mediated fluorescence quenching and duplex-specific nuclease signal amplification. Anal Chem. 2014;86:1361–5.

    Article  CAS  Google Scholar 

  32. Li YX, Li XH, Meng YC, Hun X. Photoelectrochemical platform for microRNA let-7a detection based on graphdiyne loaded with AuNPs modified electrode coupled with alkaline phosphatase. Biosens Bioelecron. 2019;130:269–75.

    Article  CAS  Google Scholar 

  33. Lin XY, Jiang JJ, Wang J, Xia JL, Wang RN, Diao GW. Competitive host-guest recognition initiated by DNAzyme-cleavage cycling for novel ratiometric electrochemical assay of miRNA-21. Sensor Actuat B: Chem. 2021;333:129556.

    Article  CAS  Google Scholar 

  34. Zhou Y, Wang HJ, Zhang H, Chai RQ, Yuan R. Programmable modulation of copper nanoclusters electrochemiluminescence via DNA nanocrances for ultrasensitive detection of microRNA. Anal Chem. 2018;90:3543–9.

    Article  CAS  Google Scholar 

  35. Zhang H, Fu CP, Yi Y, Zhou XD, Zhou CH, Ying GQ, et al. Magnetic-based SERS approach for highly sensitive and reproducible detection of cancer-related serum microRNAs. Anal Methods. 2018;10:624–33.

    Article  CAS  Google Scholar 

  36. Si YM, Xu L, Deng T, Zheng J, Li JS. Catalytic hairpin self-assembly-based SERS sensor array for the simultaneous measurement of multiple cancer-associated miRNAs. ACS Sensors. 2020;5:4009–16.

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (No. 21775064), the Natural Science Foundation of Shandong Province (ZR202103030844), Key Laboratory for Biological Medicine in Shandong Universities, Weifang Key Laboratory for Antibodies Medicine, and the technical support from the Testing Center of Hefei University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Xu or Honglin Liu.

Ethics declarations

Written informed consent was obtained, and this study was approved by the Ethics Committee of The First Affiliated Hospital of University of Science and Technology of China (No. 2021-RE-070).

Competing interests

There is no conflict of interest. The authors declare that they have no financial interests that could have appeared to influence the work reported in this paper.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2122 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, W., Zhang, Y., Chen, H. et al. DNAzyme signal amplification based on Au@Ag core–shell nanorods for highly sensitive SERS sensing miRNA-21. Anal Bioanal Chem 414, 4079–4088 (2022). https://doi.org/10.1007/s00216-022-04053-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-022-04053-z

Keywords

Navigation