Skip to main content
Log in

Recent advances in bioprobes and biolabels based on cyanine dyes

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

As a functional dye, cyanine dye promotes the widespread application of bioprobes in the fields of medicine, genetics and environment, owing to its advantages of good photophysical properties, excellent biocompatibility and low toxicity to biological systems. Nowadays, it is mainly used in the fields of life sciences such as fluorescent labeling of biological macromolecules, disease diagnosis, immunoassay and DNA detection, all of which lie at the core of this review. First, we briefly introduced the characteristics and principles of the cyanine dye bioprobe. Afterward, we paid attention to the recent progress of cyanine dye bioprobes widely used in the 10 years from 2010 to 2020. The application of cyanine dyes as bioprobes with different identification elements, including enzymes, organelles, immunity and DNAs, was mainly summarized. Finally, this review gave an outlook on the future development trend of cyanine dye bioprobes. This facilitates the construction of a new type of multifunctional fluorescent probe and promotes its clinical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Huang H. Research Progress in Cyanine Dyes and Their Functionalized Nanocomposites Used for Bioanalysis and Near-Infrared Molecular Fluorescent Imaging. Adv Anal Chem. 2016;6(4):109–15. https://doi.org/10.12677/AAC.2016.64017.

    Article  CAS  Google Scholar 

  2. Sun W, Guo S, Hu C, Fan J, Peng X. Recent Development of Chemosensors Based on Cyanine Platforms. Chem Rev. 2016;116(14):7768–817. https://doi.org/10.1021/acs.chemrev.6b00001.

    Article  CAS  PubMed  Google Scholar 

  3. Shindy HA. Fundamentals in the chemistry of cyanine dyes: A review. Dyes Pigm. 2017;145:505–13. https://doi.org/10.1016/j.dyepig.2017.06.029.

    Article  CAS  Google Scholar 

  4. Zhu Z, Chao J, Yu H, Alan SW. Directly labeled DNA probes using fluorescent nucleotides with different length linkers. Nuclc Acids Research. 1994;22(16):3418–22. https://doi.org/10.1093/nar/22.16.3418.

    Article  CAS  Google Scholar 

  5. Tadatsu M, Ito S, Muguruma N, Kusaka Y, Inayama K, Bando T, et al. A new infrared fluorescent-labeling agent and labeled antibody for diagnosing microcancers. Bioorg Med Chem. 2003;11(15):3289–94. https://doi.org/10.1016/S0968-0896(03)00239-6.

    Article  CAS  PubMed  Google Scholar 

  6. Yarmoluk S, Kovalska V, Losytskyy M. Symmetric cyanine dyes for detecting nucleic acids. Biotech Histochem. 2008;83(3-4):131–45. https://doi.org/10.1080/10520290802383684.

    Article  CAS  PubMed  Google Scholar 

  7. Mishra A, Behera RK, Behera PK, Mishra BK, Behera GB. Cyanines during the 1990s: A Review. Chem Rev. 2000;100(6):1973–2012. https://doi.org/10.1021/cr990402t.

    Article  CAS  PubMed  Google Scholar 

  8. Johanna E, Nancy M. Gene function correlates with potential for G4 DNA formation in the human genome. Nucleic Acids Res. 2006;34(14):3887–96. https://doi.org/10.1093/nar/gkl529.

    Article  CAS  Google Scholar 

  9. Panigrahi M, Dash S, Patel S, Mishra BK. Syntheses of Cyanines: A Review. Tetrahedron. 2012;68(3):781–805. https://doi.org/10.1016/j.tet.2011.10.069.

    Article  CAS  Google Scholar 

  10. Lee H, Berezin MY, Henary M, Strekowski L, Achilefu S. Fluorescence lifetime properties of near-infrared cyanine dyes in relation to their structures. J Photochem Photobiol, A. 2008;200(2–3):438–44. https://doi.org/10.1016/j.jphotochem.2008.09.008.

    Article  CAS  Google Scholar 

  11. Armitage BA. Cyanine Dye-Nucleic Acid Interactions. Heterocyclic Polymethine Dyes. 2008;14:11–29. https://doi.org/10.1007/7081_2007_109.

    Article  CAS  PubMed Central  Google Scholar 

  12. Ihmels H, Otto D. Intercalation of organic dye molecules into double-stranded DNA general principles and recent developments. In: Wurthner F, editor. Supermolecular Dye Chemistry. Topics in Current Chemistry-Series. 2582005. p. 161–204.

  13. Jaswal S, Kumar J. Review on fluorescent donor–acceptor conjugated system as molecular probes. Mater Today Proc. 2020;26:566–80. https://doi.org/10.1016/j.matpr.2019.12.161.

    Article  CAS  Google Scholar 

  14. Stennett EMS, Ciuba MA, Levitus M. Photophysical processes in single molecule organic fluorescent probes. Chem Soc Rev. 2014;43(4):1057–75. https://doi.org/10.1039/c3cs60211g.

    Article  CAS  PubMed  Google Scholar 

  15. Chen Y, Tsao K, Keillor JW. Fluorogenic Protein Labelling: A Review of Photophysical Quench Mechanisms and Principles of Fluorogen Design. Can J Chem. 2015;93(4):389–98. https://doi.org/10.1139/cjc-2014-0405.

    Article  CAS  Google Scholar 

  16. Zachariasse KA, Grobys M, Haar TVD, Hebecker A, Kühnle W. Intramolecular charge transfer in the excited state. Kinetics and configurational changes. J Photochem Photobiol A Chem. 1996;102(1):59–70. https://doi.org/10.1016/S1010-6030(96)04368-7.

    Article  CAS  Google Scholar 

  17. Welter S, Salluce N, Belser P, Groeneveld M, Cola LD. Photoinduced electronic energy transfer in modular, conjugated, dinuclear Ru(II)/Os(II) complexes. Coord Chem Rev. 2005;249(13/14):1360–71. https://doi.org/10.1016/j.ccr.2004.11.008.

    Article  CAS  Google Scholar 

  18. Clegg RM. Fluorescence resonance energy transfer. Methods Enzymol. 1995;6(1):103–10. https://doi.org/10.1016/0958-1669(95)80016-6.

    Article  CAS  Google Scholar 

  19. Ji EK, Park SY. Advanced Organic Optoelectronic Materials: Harnessing Excited-State Intramolecular Proton Transfer (ESIPT) Process. Adv Mater. 2011;23(32):3614–42. https://doi.org/10.1002/adma.201102046.

    Article  CAS  Google Scholar 

  20. Hong Y, Lam JWY, Tang B. Aggregation-induced emission: phenomenon, mechanism and applications. Chem Commun. 2009;7(29):4332–53.

    Article  Google Scholar 

  21. Gao Z. Advances in the research of piezoelectric immunobiosensor. Chun Shih I Hsueh Ko Hsueh Yuan Yuan Kan. 1995;19(4):310–3.

    CAS  Google Scholar 

  22. Charoenkitamorn K, Yakoh A, Jampasa S, et al. Electrochemical and optical biosensors for biological sensing applications. Scienceasia. 2020;46(3):245–53. https://doi.org/10.2306/scienceasia1513-1874.2020.049.

    Article  CAS  Google Scholar 

  23. López-Otín C, Bond JS. Proteases: Multifunctional Enzymes in Life and Disease*. J Biol Chem. 2008;283(45):30433–7. https://doi.org/10.1074/jbc.R800035200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Weaver JC, Cooney CL, Fulton SP, Schuler P, Tannenbaum SR. Experiments and calculations concerning a thermal enzyme probe. BBA - Enzymology. 1976;452(2):285–91. https://doi.org/10.1016/0005-2744(76)90178-9.

    Article  CAS  Google Scholar 

  25. Zhou Z. Studies of a cyanine-based biosensor and light-induced antibacterial activities of oligo(phenylene ethynylene)s. PhD thesis, The University of New Mexico. 2011.

  26. Hou TC, Wu YY, Chiang PY, Tan KT. Near-infrared fluorescence activation probes based on disassembly-induced emission cyanine dye. Chem Sci. 2015;6(8):4643–9. https://doi.org/10.1039/c5sc01330e.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Krajnik B, Golacki LW, Fiedorczyk E, Banski M, Noculak A, Holodnik KM, et al. Quantitative comparison of luminescence probes for biomedical applications. Methods Appl Fluoresc. 2021;9(4): 045001. https://doi.org/10.1088/2050-6120/ac10ae.

    Article  CAS  Google Scholar 

  28. Pandey S, Bodas D. High-quality quantum dots for multiplexed bioimaging: A critical review. Adv Colloid Interface Sci. 2020;278: 102137. https://doi.org/10.1016/j.cis.2020.102137.

    Article  CAS  PubMed  Google Scholar 

  29. Bian F, Sun L, Cai L, Wang Y, Zhao Y. Quantum dots from microfluidics for nanomedical application. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2019;11(5):e1567. https://doi.org/10.1002/wnan.1567.

    Article  PubMed  Google Scholar 

  30. Yue Z, Lv P, Yue H, Gao Y, Ma D, Wei W, et al. Inducible graphene oxide probe for high-specific tumor diagnosis. Chem Commun. 2013;49(37):3902–4. https://doi.org/10.1039/c3cc40499d.

    Article  CAS  Google Scholar 

  31. Wang K, Ruan J, Song H, Zhang J, Wo Y, Guo S, et al. Biocompatibility of Graphene Oxide. Nanoscale Res Lett. 2011;6(1):1–8. https://doi.org/10.1007/s11671-010-9751-6.

    Article  CAS  Google Scholar 

  32. Rc E, Bc W, Mi L, Dj B. Intracellular FRET-based probes: a review. Methods Appl Fluoresc. 2015;3(4): 042006. https://doi.org/10.1088/2050-6120/3/4/042006.

    Article  CAS  Google Scholar 

  33. Li H, Yao Q, Sun W, Shao K, Lu Y, Chung J, et al. Aminopeptidase N Activatable Fluorescent Probe for Tracking Metastatic Cancer and Image-Guided Surgery via in Situ Spraying. J Am Chem Soc. 2020;142(13):6381–9. https://doi.org/10.1021/jacs.0c01365.

    Article  CAS  PubMed  Google Scholar 

  34. Zhou X, Li H, Shi C, Xu F, Zhang Z, Yao Q, et al. An APN-activated NIR photosensitizer for cancer photodynamic therapy and fluorescence imaging. Biomaterials. 2020;253: 120089. https://doi.org/10.1016/j.biomaterials.2020.120089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Massoulié J, Sussman J, Bon S, Silman I. Structure and functions of acetylcholinesterase and butyrylcholinesterase. Prog Brain Res. 1993;98:139–46. https://doi.org/10.1016/s0079-6123(08)62391-2.

    Article  PubMed  Google Scholar 

  36. Chao S, Krejci E, Bernard V, Leroy J, Jean L, Renard P-Y. Selective and sensitive near-infrared fluorescent probe for acetylcholinesterase imaging. Chem Commun. 2016;52(77):11599–602. https://doi.org/10.1039/C6CC05936H.

    Article  CAS  Google Scholar 

  37. Lendvai B, Vizi ES. Nonsynaptic chemical transmission through nicotinic acetylcholine receptors. Physiol Rev. 2008;88(2):333–49. https://doi.org/10.1152/physrev.00040.2006.

    Article  CAS  PubMed  Google Scholar 

  38. Satoko U. The cyanine Dye NK-4 improves scopolamine-induced memory impairments in mice. Biol Pharm Bull. 2012;10(35):1831–5. https://doi.org/10.1248/bpb.b12-00370.

    Article  Google Scholar 

  39. Klichkhanov N, Dzhafarova A, Ramazanova P, Ali A, Abakarov G, Dzharaeva M. A New Tellurium- and Selenoorganic Compound as an Inhibitor of Acetylcholinesterase in Brain. Bull Exp Biol Med. 2019;168(2):229–32. https://doi.org/10.1007/s10517-019-04680-0.

    Article  CAS  PubMed  Google Scholar 

  40. Van Hoof VO, De Broe ME. Interpretation and clinical significance of alkaline phosphatase isoenzyme patterns. CRC Crit Rev Clin Lab Sci. 1994;31(3):197–293. https://doi.org/10.3109/10408369409084677.

    Article  Google Scholar 

  41. Shi LF, Ling ZY, Bing LX, Lin LB, Feng LY. Biosensor of alkaline phosphatase based on non-fluorescent FRET of Eu3+-doped oxide nanoparticles and phosphorylated peptide labeled with cyanine dye. Anal Bioanal Chem. 2017;409(23):5491–500. https://doi.org/10.1007/s00216-017-0485-5.

    Article  CAS  Google Scholar 

  42. Tan Y, Zhang L, Man KH, Peltier R, Chen G, Zhang H, et al. A Reaction-based OFF-ON Near-infrared Fluorescent Probe for Imaging Alkaline Phosphatase Activity in Living Cells and Mice. Acs Appl Mater Interfaces. 2017;9(8):6796–803. https://doi.org/10.1021/acsami.6b14176.

    Article  CAS  PubMed  Google Scholar 

  43. Li S, Li C, Li Y, Fei J, Wu P, Yang B, et al. Facile and Sensitive Near-Infrared Fluorescence Probe for the Detection of Endogenous Alkaline Phosphatase Activity In Vivo. Anal Chem. 2017;89(12):6854–60. https://doi.org/10.1021/acs.analchem.7b01351.

    Article  CAS  PubMed  Google Scholar 

  44. Gao Z, Sun J, Gao M, Yu F, Chen L, Chen Q. A unique off–on near-infrared cyanine-based probe for imaging of endogenous alkaline phosphatase activity in cells and in vivo. Sens Actuators, B Chem. 2018;265:565–74. https://doi.org/10.1016/j.snb.2018.03.078.

    Article  CAS  Google Scholar 

  45. Campbell RM, Dinsdale D, Fell BF. Localization of acid phosphatase activity in the liver of pregnant rats. Histochem J. 1977;9(1):43–60. https://doi.org/10.1007/BF01007008.

    Article  CAS  PubMed  Google Scholar 

  46. Cai S, Liu C, Jiao X, He S, Zhao L, Zeng X. A lysosome-targeted near-infrared fluorescent probe for imaging of acid phosphatase in living cells. Org Biomol Chem. 2020;18(6):1148–54. https://doi.org/10.1039/C9OB02188D.

    Article  CAS  PubMed  Google Scholar 

  47. Xu M, Xing S, Xu X, Fu P, Xu W, Zhao C. Label-free colorimetric aptasensor for highly sensitive and selective detection of proteins by using PNA/DNA hybrids and a cyanine dye. Anal Methods. 2018;10(31):3824–9. https://doi.org/10.1039/c8ay01071d.

    Article  Google Scholar 

  48. Nielsen PE. Structural and biological properties of peptide nucleic acid (PNA). Pure Appl Chem. 1998;70(1):105–10. https://doi.org/10.1351/pac199870010105.

    Article  CAS  Google Scholar 

  49. Sun HX, Xiang JF, Yang QF, Shang QA, Zhou QJ, Zhang YX, et al. Controllable assembly and cycling conversion of various supramolecular aggregates of a cyanine dye. Appl Phys Lett. 2011;98(3): 031103. https://doi.org/10.1063/1.3535980.

    Article  CAS  Google Scholar 

  50. Bricks JL, Slominskii YL, Panas ID, Demchenko AP. Fluorescent J-aggregates of cyanine dyes: basic research and applications review. Methods Appl Fluoresc. 2018;6(1): 012001. https://doi.org/10.1088/2050-6120/aa8d0d.

    Article  CAS  Google Scholar 

  51. Yu G, Walker M, Wilson MR. Atomistic simulation studies of ionic cyanine dyes: self-assembly and aggregate formation in aqueous solution. Phys Chem Chem Phys. 2021;23(11):6408–21. https://doi.org/10.1039/d0cp06205g.

    Article  CAS  PubMed  Google Scholar 

  52. Wang L, Xiang J, Sun H, Yang Q, Yu L, Li Q, et al. Controllable cy3-MTC-dye aggregates and its applications served as a chemosensor. Dyes Pigm. 2015;122:382–8. https://doi.org/10.1016/j.dyepig.2015.07.018.

    Article  CAS  Google Scholar 

  53. Kaloyanova S, Zagranyarski Y, Ritz S, Hanulova M, Koynov K, Vonderheit A, et al. Water-Soluble NIR-Absorbing Rylene Chromophores for Selective Staining of Cellular Organelles. J Am Chem Soc. 2016;138(9):2881–4. https://doi.org/10.1021/jacs.5b10425.

    Article  CAS  PubMed  Google Scholar 

  54. Zhu H, Fan J, Du J, Peng X. Fluorescent Probes for Sensing and Imaging within Specific Cellular Organelles. Acc Chem Res. 2016;49(10):2115–26. https://doi.org/10.1021/acs.accounts.6b00292.

    Article  CAS  PubMed  Google Scholar 

  55. Na X, Yu P, Zhang H. Biosensors of Cell and Organelle. J Transducer Technol. 1998;17(2):2–4.

    Google Scholar 

  56. Bereiter-Hahn J, Vöth M. Dynamics of mitochondria in living cells: Shape changes, dislocations, fusion, and fission of mitochondria. Microsc Res Tech. 1994;27(3):198–219. https://doi.org/10.1002/jemt.1070270303.

    Article  CAS  PubMed  Google Scholar 

  57. Zhang X, Sun Q, Huang Z, Huang L, Xiao Y. Immobilizable fluorescent probes for monitoring the mitochondria microenvironment: a next step from the classic. J Mater Chem B. 2019;7(17):2749–58. https://doi.org/10.1039/C9TB00043G.

    Article  CAS  PubMed  Google Scholar 

  58. Xu K, Wang L, Qiang M, Li P, Tang B. A selective near-infrared fluorescent probe for singlet oxygen in living cells. Chem Commun. 2011;47(26):7386–8. https://doi.org/10.1039/C1CC12473K.

    Article  CAS  Google Scholar 

  59. Liu Y, Zhou J, Wang L, Hu X, Liu X, Liu M, et al. A Cyanine Dye to Probe Mitophagy: Simultaneous Detection of Mitochondria and Autolysosomes in Live Cells. J Am Chem Soc. 2016;138(38):12368–74. https://doi.org/10.1021/jacs.6b04048.

    Article  CAS  PubMed  Google Scholar 

  60. Thomas RL, Gustafsson, Aring, sa B. Mitochondrial Autophagy-An Essential Quality Control Mechanism for Myocardial Homeostasis. Circ J. 2013;77(10):2449–54. https://doi.org/10.1253/circj.cj-13-0835.

  61. Qi Y, Guo L, Chen L, Li H, Yang Y, Jiang A, et al. Recent progress in the design principles, sensing mechanisms, and applications of small-molecule probes for nitroreductases. Coord Chem Rev. 2020;421: 213460. https://doi.org/10.1016/j.ccr.2020.213460.

    Article  CAS  Google Scholar 

  62. Sha X, Yang X, Wei X, Sun R, Xu Y, Ge J. A mitochondria/lysosome-targeting fluorescence probe based on azonia- cyanine dye and its application in nitroreductase detection. Sensors and Actuators. 2020;307:127653.1-.9. https://doi.org/10.1016/j.snb.2019.127653.

  63. Pan G, Jia H, Zhu Y, Wang R, Wu F, Chen Z. Dual Channel Activatable Cyanine Dye for Mitochondrial Imaging and Mitochondria-Targeted Cancer Theranostics. ACS Biomater Sci Eng. 2017;3(12):3596–606. https://doi.org/10.1021/acsbiomaterials.7b00480.

    Article  CAS  PubMed  Google Scholar 

  64. Saha PC, Chatterjee T, Pattanayak R, Das RS, Guha S. Targeting and Imaging of Mitochondria Using Near-Infrared Cyanine Dye and Its Application to Multicolor Imaging. ACS Omega. 2019;4(11):14579–88. https://doi.org/10.1021/acsomega.9b01890.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Matilainen O, Quirós PM, Auwerx J. Mitochondria and Epigenetics - Crosstalk in Homeostasis and Stress. Trends Cell Biol. 2017;27(6):453–63. https://doi.org/10.1016/j.tcb.2017.02.004.

    Article  CAS  PubMed  Google Scholar 

  66. Abeywickrama CS, Bertman KA, Plescia CB, Stahelin RV, Pang Y. Structural Effect on the Cellular Selectivity of an NIR-Emitting Cyanine Probe: From Lysosome to Simultaneous Nucleus and Mitochondria Selectivity with Potential for Monitoring Mitochondria Dysfunction in Cells. ACS Appl Bio Mater. 2019;2(11):5174–81. https://doi.org/10.1021/acsabm.9b00810.

    Article  CAS  PubMed  Google Scholar 

  67. Abeywickrama CS, Bertman KA, Pang Y. From nucleus to mitochondria to lysosome selectivity switching in a cyanine probe: The phenolic to methoxy substituent conversion affects probe’s selectivity. Bioorg Chem. 2020;99: 103848. https://doi.org/10.1016/j.bioorg.2020.103848.

    Article  CAS  PubMed  Google Scholar 

  68. Jiri G, Milan R, Konttinen YT, Christophe N, Goodman SB. Innate immunity sensors participating in pathophysiology of joint diseases: a brief overview. J Long Term Eff Med Implants. 2014;24(4):297–317. https://doi.org/10.1615/JLongTermEffMedImplants.2014010825.

    Article  Google Scholar 

  69. Ogata F, Nagaya T, Nakamura Y, Sato K, Okuyama S, Maruoka Y, et al. Near-infrared photoimmunotherapy: a comparison of light dosing schedules. Oncotarget. 2017;8(21):35069–75. https://doi.org/10.18632/oncotarget.17047.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Lin X, Zhu H, Luo Z, Hong Y, Zhang H, Liu X, et al. Near-Infrared Fluorescence Imaging of Non-Hodgkin’s Lymphoma CD20 Expression Using Cy7-Conjugated Obinutuzumab. Mol Imag Biol. 2014;16(6):877–87. https://doi.org/10.1007/s11307-014-0742-3.

    Article  Google Scholar 

  71. Hermanson GT. Functional Targets. Bioconjugate Techniques. 1996: 3–136. https://doi.org/10.1016/B978-012342335-1/50002-6.

  72. Reichert JM. Antibody-based therapeutics to watch in 2011. MAbs. 2011;3(1):76–99. https://doi.org/10.4161/mabs.3.1.13895.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Mohrbacher A. B cell non-Hodgkin’s lymphoma: rituximab safety experience. Arthritis Res Ther. 2005;7(3 Supplement):19–25. https://doi.org/10.1186/ar1739.

    Article  Google Scholar 

  74. Su SL, Huang IP, Fair WR, Powell CT, Heston WD. Alternatively spliced variants of prostate-specific membrane antigen RNA: ratio of expression as a potential measurement of progression. Can Res. 1995;55(7):1441–3. https://doi.org/10.1007/BF01519900.

    Article  CAS  Google Scholar 

  75. Chen Y, Pullambhatla M, Banerjee SR, Byun Y, Stathis M, Rojas C, et al. Synthesis and biological evaluation of low molecular weight fluorescent imaging agents for the prostate-specific membrane antigen. Bioconjug Chem. 2012;23(12):2377–85. https://doi.org/10.1021/bc3003919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Matsuoka D, Watana Be H, Shimizu Y, Kimura H, Ono M, Saji H. Synthesis and evaluation of a novel near-infrared fluorescent probe based on succinimidyl-Cys-C(O)-Glu that targets prostate-specific membrane antigen for optical imaging. Bioorg Med Chem Lett. 2017;27(21):4876–80. https://doi.org/10.1016/j.bmcl.2017.09.037.

    Article  CAS  PubMed  Google Scholar 

  77. Horm TM, Schroeder JA. MUC1 and metastatic cancer: expression, function and therapeutic targeting. Cell Adh Migr. 2013;7(2):187–98. https://doi.org/10.4161/cam.23131.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Zhang Q, Wang F, Wu Y, Zhang K, Lin Y, Zhu X, et al. Dual-color labeled anti-mucin 1 antibody for imaging of ovarian cancer: A preliminary animal study. Oncol Lett. 2015;9(3):1231–5. https://doi.org/10.3892/ol.2014.2807.

    Article  PubMed  Google Scholar 

  79. Zhang C, Ling X, Guo Y, Yuan C, Cui H. Evaluation of COC183B2 antibody targeting ovarian cancer by near-infrared fluorescence imaging. Chin J Cancer Res. 2019;31(4):673–85. https://doi.org/10.21147/j.issn.1000-9604.2019.04.11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Qian J, Xu D, Ho SL, Wang K, Wong MS, Li H. Magnetically controlled immunosensor for highly sensitive detection of carcinoembryonic antigen based on an efficient “turn-on” cyanine fluorophore. Sens Actuators, B Chem. 2018;258:133–40. https://doi.org/10.1016/j.snb.2017.11.103.

    Article  CAS  Google Scholar 

  81. Ho SL, Xu D, Wong MS, Li HW. Direct and multiplex quantification of protein biomarkers in serum samples using an immuno-magnetic platform. Chem Sci. 2016;7(4):2695–700. https://doi.org/10.1039/C5SC04115E.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ren Y, Che Z. The application of immunolabelling technique in food safety detection. China Condiment. 2010;3:17–9.

    Google Scholar 

  83. Vitzthum F, Geiger G, Bisswanger H, Brunner H, Bernhagen J. A quantitative fluorescence-based microplate assay for the determination of double-stranded DNA using SYBR Green I and a standard ultraviolet transilluminator gel imaging system. Anal Biochem. 1999;276(1):59–64. https://doi.org/10.1006/abio.1999.4298.

    Article  CAS  PubMed  Google Scholar 

  84. Mishra N, Rai N, Singhai A. DNA Probe Labelling Detection Method and Their Application in Medical Research: A Review. IjpprHuman. 2018;11(4):66–79.

    CAS  Google Scholar 

  85. Kapuscinski J. DAPI: a DNA-specific fluorescent probe. Biotech Histochem. 1995;70(5):220–33. https://doi.org/10.3109/10520299509108199.

    Article  CAS  PubMed  Google Scholar 

  86. Latt SA, Wohlleb JC. Optical studies of 33258 Hoechst with DNA, chromatin, and metaphase chromosomes. Chromosoma. 1975;52(4):297–316. https://doi.org/10.1007/BF00364015.

    Article  CAS  PubMed  Google Scholar 

  87. Erkkila KE, Odom DT, Barton JK. Recognition and Reaction of Metallointercalators with DNA. Chem Rev. 1999;99(9):2777–96. https://doi.org/10.1021/cr9804341.

    Article  CAS  PubMed  Google Scholar 

  88. Crnolatac I, Tumir L-M, Lesev NY, Vasilev AA, Deligeorgiev TG, Mišković K, et al. Probing the Structural Properties of DNA/RNA Grooves with Sterically Restricted Phosphonium Dyes: Screening of Dye Cytotoxicity and Uptake. ChemMedChem. 2013;8(7):1093–103. https://doi.org/10.1002/cmdc.201300085.

    Article  CAS  PubMed  Google Scholar 

  89. Wiederschain GY. The Molecular Probes handbook. A guide to fluorescent probes and labeling technologies. Biochemistry. 2011;76(11):1276. https://doi.org/10.1134/S0006297911110101.

    Article  CAS  Google Scholar 

  90. Jonas KH, Maja E, Erik P, Bjrn K, Per L, Gunnar W. Groove-binding unsymmetrical cyanine dyes for staining of DNA: syntheses and characterization of the DNA-binding. Nucleic Acids Res. 2003;31(21):6227–34. https://doi.org/10.1093/nar/gkg821.

    Article  CAS  Google Scholar 

  91. Constantin TP, Silva GL, Robertson KL, Hamilton TP. Synthesis of New Fluorogenic Cyanine Dyes and Incorporation into RNA Fluoromodules. Org Lett. 2008;10(8):1561–4. https://doi.org/10.1021/ol702920e.

    Article  CAS  PubMed  Google Scholar 

  92. Tariq M, Alexis P, Sylvain L. Synthesis and spectroscopic and DNA-binding properties of fluorogenic acridine-containing cyanine dyes. J Org Chem. 2010;75(1):204–7. https://doi.org/10.1021/jo901820t.

    Article  CAS  Google Scholar 

  93. Nelson SM, Ferguson LR, Denny WA. Non-covalent ligand/DNA interactions: Minor groove binding agents. Mutat Res. 2007;623(1–2):24–40. https://doi.org/10.1016/j.mrfmmm.2007.03.012.

    Article  CAS  PubMed  Google Scholar 

  94. Karlsson HJ, Bergqvist MH, Lincoln P, Westman G. Syntheses and DNA-binding studies of a series of unsymmetrical cyanine dyes: structural influence on the degree of minor groove binding to natural DNA. Bioorg Med Chem. 2004;12(9):2369–84. https://doi.org/10.1016/j.bmc.2004.02.006.

    Article  CAS  PubMed  Google Scholar 

  95. Silva GL, Ediz V, Yaron D, Armitage BA. Experimental and Computational Investigation of Unsymmetrical Cyanine Dyes: Understanding Torsionally Responsive Fluorogenic Dyes. J Am Chem Soc. 2007;129(17):5710–8. https://doi.org/10.1021/ja070025z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Uno K, Sasaki T, Sugimoto N, Ito H, Nishihara T, Hagihara S, et al. Key Structural Elements of Unsymmetrical Cyanine Dyes for Highly Sensitive Fluorescence Turn-On DNA Probes. Chem Asian J. 2017;12(2):233–8. https://doi.org/10.1002/asia.201601430.

    Article  CAS  PubMed  Google Scholar 

  97. Bohlaender PR, Wagenknecht HA. Synthesis and evaluation of cyanine-styryl dyes with enhanced photostability for fluorescent DNA staining. Org Biomol Chem. 2013;11(43):7458–62. https://doi.org/10.1039/c3ob41717d.

    Article  CAS  Google Scholar 

  98. Mapp CT, Owens EA, Henary M, Grant KB. Oxidative cleavage of DNA by pentamethine carbocyanine dyes irradiated with long-wavelength visible light. Bioorg Med Chem Lett. 2014;24(1):214–9. https://doi.org/10.1016/j.bmcl.2013.11.035.

    Article  CAS  PubMed  Google Scholar 

  99. Nano A, Boynton AN, Barton JK. A Rhodium-Cyanine Fluorescent Probe: Detection and Signaling of Mismatches in DNA. J Am Chem Soc. 2017;139(48):17301–4. https://doi.org/10.1021/jacs.7b10639.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Loeb LA. A mutator phenotype in cancer. Can Res. 2001;61(8):3230–9. https://doi.org/10.1007/3-540-30683-8_1140.

    Article  CAS  Google Scholar 

  101. Zheng YC, Zheng ML, Chen S, Zhao ZS, Duan XM. Biscarbazolylmethane-based cyanine: A two-photon excited fluorescent probe for DNA and selective cell imaging. J Mater Chem B. 2014;2(16):2301–10. https://doi.org/10.1039/C3TB21860K.

    Article  CAS  PubMed  Google Scholar 

  102. Knölker H, Reddy KR. Isolation and synthesis of biologically active carbazole alkaloids. Chem Rev. 2002;102(11):4303–428. https://doi.org/10.1002/chin.200304238.

    Article  PubMed  Google Scholar 

  103. Gao F, Cao S, Sun W, Long S, Fan J, Peng X. Development of a two-photon carbazole derivative probe for fluorescent visualization of G-quadruplex DNA in cells. Dyes Pigm. 2019;171: 107749. https://doi.org/10.1016/j.dyepig.2019.107749.

    Article  CAS  Google Scholar 

  104. Oganesian L, Bryan TM. Physiological relevance of telomeric G-quadruplex formation: a potential drug target. BioEssays. 2010;29(2):155–65. https://doi.org/10.1002/bies.20523.

    Article  CAS  Google Scholar 

  105. Lu Y-J, Wang Z-Y, Hu D-P, Deng Q, Huang B-H, Fang Y-X, et al. Benzothiazole-substituted benzofuroquinolinium dyes as new fluorescent probes for G-quadruplex DNA. Dyes Pigm. 2015;122:94–102. https://doi.org/10.1016/j.dyepig.2015.06.018.

    Article  CAS  Google Scholar 

  106. Lu Y-J, Hu D-P, Zhang K, Wong W-L, Chow C-F. New pyridinium-based fluorescent dyes: A comparison of symmetry and side-group effects on G-Quadruplex DNA binding selectivity and application in live cell imaging. Biosens Bioelectron. 2016;81:373–81. https://doi.org/10.1016/j.bios.2016.03.012.

    Article  CAS  PubMed  Google Scholar 

  107. Hou JQ, Tan JH, Wang XX, Chen SB, Huang SY, Yan JW, et al. Impact of planarity of unfused aromatic molecules on G-quadruplex binding: Learning from isaindigotone derivatives. Org Biomol Chem. 2011;9(18):6422–36. https://doi.org/10.1039/c1ob05884c.

    Article  CAS  PubMed  Google Scholar 

  108. Yan J-W, Ye W-J, Chen S-B, Wu W-B, Hou J-Q, Ou T-M, et al. Development of a Universal Colorimetric Indicator for G-Quadruplex Structures by the Fusion of Thiazole Orange and Isaindigotone Skeleton. Anal Chem. 2012;84(15):6288–92. https://doi.org/10.1021/ac300207r.

    Article  CAS  PubMed  Google Scholar 

  109. Jin J, Hou J, Long W, Zhang X, Lu Y-J, Li D, et al. Synthesis of fluorescent G-quadruplex DNA binding ligands for the comparison of terminal group effects in molecular interaction: Phenol versus methoxybenzene. Bioorg Chem. 2020;99: 103821. https://doi.org/10.1016/j.bioorg.2020.103821.

    Article  CAS  PubMed  Google Scholar 

  110. Ihmels H, Jiang S, Mahmoud MMA, Schönherr H, Wesner D, Zamrik I. Fluorimetric Detection of G-Quadruplex DNA in Solution and Adsorbed on Surfaces with a Selective Trinuclear Cyanine Dye. Langmuir. 2018;34(39):11866–77. https://doi.org/10.1021/acs.langmuir.8b02382.

    Article  CAS  PubMed  Google Scholar 

  111. Feng L, Chen W, Ma X, Liu SH, Yin J. Near-infrared heptamethine cyanines (Cy7): from structure, property to application. Org Biomol Chem. 2020;18(46):9385–97. https://doi.org/10.1039/D0OB01962C.

    Article  CAS  PubMed  Google Scholar 

  112. Brooks TA, Hurley LH. The role of supercoiling in transcriptional control of MYC and its importance in molecular therapeutics. Nat Rev Cancer. 2009;9(12):849–61. https://doi.org/10.1038/nrc2733.

    Article  CAS  PubMed  Google Scholar 

  113. Lin D, Fei X, Gu Y, Wang C, Tang Y, Ran L, et al. A benzindole substituted carbazole cyanine dye: a novel targeting fluorescent probe for parallel c-myc G-quadruplexes. Analyst. 2015;140(16):5772–80. https://doi.org/10.1039/C5AN00866B.

    Article  CAS  PubMed  Google Scholar 

  114. Yu L, Yang Q, Xiang J, Sun H, Wang L, Li Q, et al. Targeting of parallel c-myc G-quadruplex by dimeric cyanine dye supramolecular assembly: dependence on the linker length. Analyst. 2015;140(5):1637–46. https://doi.org/10.1039/c4an01912a.

    Article  CAS  PubMed  Google Scholar 

  115. Han X, Wang E, Cui Y, Lin Y, Chen H, An R, et al. The staining efficiency of cyanine dyes for single-stranded DNA is enormously dependent on nucleotide composition. Electrophoresis. 2019;40(12–13):1708–14. https://doi.org/10.1002/elps.201800445.

    Article  CAS  PubMed  Google Scholar 

  116. O’Brien K, Breyne K, Ughetto S, Laurent LC, Breakefield XO. RNA delivery by extracellular vesicles in mammalian cells and its applications. Nat Rev Mol Cell Biol. 2020;21(10):585–606. https://doi.org/10.1038/s41580-020-0251-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Akram F, Atique N, Haq IU, Ahmed Z, Jabbar Z, Nawaz A, et al. MicroRNA, a Promising Biomarker for Breast and Ovarian Cancer: A Review. Curr Protein Pept Sci. 2021;22(8):599–619. https://doi.org/10.2174/1389203722666210608154705.

    Article  PubMed  Google Scholar 

  118. Luo X, Xue B, Feng G, Zhang J, Lin B, Zeng P, et al. Lighting up the Native Viral RNA Genome with a Fluorogenic Probe for the Live-Cell Visualization of Virus Infection. J Am Chem Soc. 2019;141(13):5182–91. https://doi.org/10.1021/jacs.8b10265.

    Article  CAS  PubMed  Google Scholar 

  119. Aristova D, Kosach V, Chernii S, Slominsky Y, Balanda A, Filonenko V, et al. Monomethine cyanine probes for visualization of cellular RNA by fluorescence microscopy. Methods Appl Fluoresc. 2021;9(4): 045002. https://doi.org/10.1088/2050-6120/ac10ad.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant Number 21807034) and Natural Science Foundation of Hebei Province (No. B2020209079).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lei Shi or Xiufeng Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, X., Shi, L., Zhang, B. et al. Recent advances in bioprobes and biolabels based on cyanine dyes. Anal Bioanal Chem 414, 4551–4573 (2022). https://doi.org/10.1007/s00216-022-03995-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-022-03995-8

Keywords

Navigation