Skip to main content
Log in

Identification of bacteria by poly-aromatic hydrocarbon biosensors

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Human health is consistently threatened by different species of pathogenic bacteria. To fight the spread of diseases, it is important to develop rapid methods for bacterial identification. Over the years, different kinds of biosensors were developed for this cause. Another environmental risk is poly-aromatic hydrocarbons (PAHs) that may be emitted from industrial facilities and pollute environmental water and soil. One of the methods for their purification is conducted by the addition of bacteria that can degrade the PAHs, while the bacteria can be filtrated at the end of the process. Although many studies reported monitoring of the PAHs degradation by fluorescence, not much attention was dedicated to studying the influence of the PAHs on the intrinsic fluorescence of the degrading bacteria. In this work, we apply synchronous fluorescence (SF) measurements to study the ability of the 5 PAHs: 9-Antracene carboxylic acid (9ACA), Pyrene, Perylene, Pentacene, and Chrysene to interact with bacteria and change its fluorescence spectra. We show that upon incubation of each PAH with the bacterium E. coli, only the 2 PAHs 9ACA and Perylene cause an intensity decrease in the emission at λ = 300–375 nm, which derives from the emission of tyrosine and tryptophan (TT). Also, we show that upon incubation of 9ACA and Perylene with 5 different pathogenic bacteria, the intensity increase or decrease in the TT emission is unique to each bacterial species. Based on this observation, we suggest that the PAHs 9ACA and Perylene can be utilized as biosensors for bacterial identification.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and material

Not applicable.

Code availability

Not applicable.

References

  1. Tripathi N, Sapra A. Gram staining. In: StatPearls. Treasure Island: StatPearls Publishing; 2021.

  2. Arreguin-Campos R, Eersels K, Lowdon JW, Rogosic R, Heidt B, Caldara M, Jiménez-Monroy KL, Diliën H, Cleij TJ, van Grinsven B. Biomimetic sensing of Escherichia coli at the solid-liquid interface: from surface-imprinted polymer synthesis toward real sample sensing in food safety. Microchem J. 2021;169: 106554. https://doi.org/10.1016/j.microc.2021.106554.

    Article  CAS  Google Scholar 

  3. Ramponi G, Folci M, De Santis M, Damoiseaux JGMC, Selmi C, Brunetta E. The biology, pathogenetic role, clinical implications, and open issues of serum anti-neutrophil cytoplasmic antibodies. Autoimmun Rev. 2021;20: 102759. https://doi.org/10.1016/j.autrev.2021.102759.

    Article  CAS  PubMed  Google Scholar 

  4. Pinne M, Haake D. Immuno-fluorescence assay of leptospiral surface-exposed proteins. JoVE. 2011;e2805. https://doi.org/10.3791/2805.

  5. Wu L, Wang S, Song Y, Wang X, Yan X. Applications and challenges for single-bacteria analysis by flow cytometry. Sci China Chem. 2016;59:30–9. https://doi.org/10.1007/s11426-015-5518-3.

    Article  CAS  Google Scholar 

  6. Phanse Y, Ramer-Tait AE, Friend SL, Carrillo-Conde B, Lueth P, Oster CJ, et al. Analyzing cellular internalization of nanoparticles and bacteria by multi-spectral imaging flow cytometry. JoVE. 2012;e3884. https://doi.org/10.3791/3884.

  7. Stoica BE, Gavrila A-M, Sarbu A, Iovu H, Brisset H, Miron A, Iordache T-V. Uncovering the behavior of screen-printed carbon electrodes modified with polymers molecularly imprinted with lipopolysaccharide. Electrochem commun. 2021;124: 106965. https://doi.org/10.1016/j.elecom.2021.106965.

    Article  CAS  Google Scholar 

  8. Harz M, Rösch P, Popp J. Vibrational spectroscopy-a powerful tool for the rapid identification of microbial cells at the single-cell level. Cytometry A. 2009;75:104–13. https://doi.org/10.1002/cyto.a.20682.

    Article  CAS  PubMed  Google Scholar 

  9. Maquelin K, Choo-Smith LP, Kirschner C, Ngo-Thi NA, Naumann D, Puppels GJ. Vibrational spectroscopic studies of microorganisms. In: Handbook of vibrational spectroscopy. American Cancer Society; 2006.

  10. Maquelin K, Kirschner C, Choo-Smith L-P, van den Braak N, Endtz HP, Naumann D, Puppels GJ. Identification of medically relevant microorganisms by vibrational spectroscopy. J Microbiol Methods. 2002;51:255–71. https://doi.org/10.1016/s0167-7012(02)00127-6.

    Article  CAS  PubMed  Google Scholar 

  11. Maquelin K, Choo-Smith LP, van Vreeswijk T, Endtz HP, Smith B, Bennett R, Bruining HA, Puppels GJ. Raman spectroscopic method for identification of clinically relevant microorganisms growing on solid culture medium. Anal Chem. 2000;72:12–9. https://doi.org/10.1021/ac991011h.

    Article  CAS  PubMed  Google Scholar 

  12. Forrester JB, Valentine NB, Su YF, Johnson TJ. Chemometric analysis of multiple species of Bacillus bacterial endospores using infrared spectroscopy: discrimination to the strain level. Anal Chim Acta. 2009;651:24–30. https://doi.org/10.1016/j.aca.2009.08.005.

    Article  CAS  PubMed  Google Scholar 

  13. Mouwen DJM, Hörman A, Korkeala H, Alvarez-Ordóñez A, Prieto M. Applying Fourier-transform infrared spectroscopy and chemometrics to the characterization and identification of lactic acid bacteria. Vib Spectrosc. 2011;56:193–201. https://doi.org/10.1016/j.vibspec.2011.02.008.

    Article  CAS  Google Scholar 

  14. Rodriguez-Saona LE, Khambaty FM, Fry FS, Calvey EM. Rapid detection and identification of bacterial strains by Fourier transform nearinfrared spectroscopy. J Agric Food Chem. 2001;49:574–9. https://doi.org/10.1021/jf000776j.

    Article  CAS  PubMed  Google Scholar 

  15. Dubois J, Neil Lewis E, Fry FS, Calvey EM. Bacterial identification by near-infrared chemical imaging of food-specific cards. Food Microbiol. 2005;22:577–83. https://doi.org/10.1016/j.fm.2005.01.001.

    Article  CAS  Google Scholar 

  16. Alexandrakis D, Downey G, Scannell AGM. Detection and identification of bacteria in an isolated system with near-infrared spectroscopy and multivariate analysis. J Agric Food Chem. 2008;56:3431–7. https://doi.org/10.1021/jf073407x.

    Article  CAS  PubMed  Google Scholar 

  17. Shi J, Hu X, Zou X, Guo Z, Holmes M, Tahir HE, Huang X, Li Z. Rapid identification of Lactobacillus species using near infrared spectral features of bacterial colonies. J Near Infrared Spectrosc. 2019;27:302–13. https://doi.org/10.1177/0967033519852012.

    Article  CAS  Google Scholar 

  18. Treguier S, Couderc C, Tormo H, Kleiber D, Levasseur-Garcia C. Identification of lactic acid bacteria Enterococcus and Lactococcus by near-infrared spectroscopy and multivariate classification. J Microbiol Methods. 2019;165: 105693. https://doi.org/10.1016/j.mimet.2019.105693.

    Article  CAS  PubMed  Google Scholar 

  19. Yu L, Hao L, Meiqiong T, Jiaoqi H, Wei L, Jinying D, Xueping C, Weiling F, Yang Z. The medical application of terahertz technology in non-invasive detection of cells and tissues: opportunities and challenges. RSC Adv. 2019;9:9354–63. https://doi.org/10.1039/C8RA10605C.

    Article  CAS  Google Scholar 

  20. Rehse SJ. A review of the use of laser-induced breakdown spectroscopy for bacterial classification, quantification, and identification. Spectrochim Acta Part B At Spectrosc. 2019;154:50–69. https://doi.org/10.1016/j.sab.2019.02.005.

    Article  CAS  Google Scholar 

  21. Samuels AC, Delucia FCJ, Mcnesby KL, Miziolek AW. Laser-induced breakdown spectroscopy of bacterial spores, molds, pollens, and protein: initial studies of discrimination potential. Appl Opt. 2003;42:6205–9. https://doi.org/10.1364/ao.42.006205.

    Article  CAS  PubMed  Google Scholar 

  22. Kim T, Specht ZG, Vary PS, Lin CT. Spectral fingerprints of bacterial strains by laser-induced breakdown spectroscopy. J Phys Chem B. 2004;108:5477–82. https://doi.org/10.1021/jp031269i.

    Article  CAS  Google Scholar 

  23. Rehse SJ, Jeyasingham N, Diedrich J, Palchaudhuri S. A membrane basis for bacterial identification and discrimination using laser-induced breakdown spectroscopy. J Appl Phys. 2009;105: 102034. https://doi.org/10.1063/1.3116141.

    Article  CAS  Google Scholar 

  24. Singh VK, Sharma J, Pathak AK, Ghany CT, Gondal MA. Laser-induced breakdown spectroscopy (LIBS): a novel technology for identifying microbes causing infectious diseases. Biophys Rev. 2018;10:1221–39. https://doi.org/10.1007/s12551-018-0465-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Malenfant DJ, Gillies DJ, Rehse SJ. Bacterial suspensions deposited on microbiological filter material for rapid laser-induced breakdown spectroscopy identification. Appl Spectrosc. 2016;70:485–93. https://doi.org/10.1177/0003702815626673.

    Article  CAS  PubMed  Google Scholar 

  26. Manzoor S, Moncayo S, Navarro-Villoslada F, Ayala JA, Izquierdo-Hornillos R, de Villena FJM, Caceres JO. Rapid identification and discrimination of bacterial strains by laser induced breakdown spectroscopy and neural networks. Talanta. 2014;121:65–70. https://doi.org/10.1016/j.talanta.2013.12.057.

    Article  CAS  PubMed  Google Scholar 

  27. Shlosberg Y, Farber Y, Hasson S, Bulatov V, Schechter I. Fast label-free identification of bacteria by synchronous fluorescence of amino acids. Anal Bioanal Chem. 2021. https://doi.org/10.1007/s00216-021-03642-8.

    Article  PubMed  Google Scholar 

  28. Jolliffe I. Principal component analysis, 2nd ed. Springer series in statistics. Berlin Heidelberg New York; 2002.

  29. Perinchery SM, Kuzhiumparambil U, Vemulpad S, Goldys EM. The potential of autofluorescence spectroscopy to detect human urinary tract infection. Talanta. 2010;82:912–7. https://doi.org/10.1016/j.talanta.2010.05.049.

    Article  CAS  PubMed  Google Scholar 

  30. Sahar A, Boubellouta T, Dufour É. Synchronous front-face fluorescence spectroscopy as a promising tool for the rapid determination of spoilage bacteria on chicken breast fillet. Food Res Int. 2011;44:471–80. https://doi.org/10.1016/j.foodres.2010.09.006.

    Article  CAS  Google Scholar 

  31. Belal T, Romdhane K, Jean-Louis B, Tahar B, Eric D, Françoise L. Optical fiber-based synchronous fluorescence spectroscopy for bacterial discrimination directly from colonies on agar plates. Anal Methods. 2011;3:133–43. https://doi.org/10.1039/C0AY00135J.

    Article  CAS  PubMed  Google Scholar 

  32. Meglen RR. Chemometrics: its role in chemistry and measurement sciences. Chemom Intell Lab Syst. 1988;3:17–29. https://doi.org/10.1016/0169-7439(88)80062-5.

    Article  CAS  Google Scholar 

  33. Wittrup C. Comparison of chemometric methods for classification of fungal extracts based on rapid fluorescence spectroscopy. J Chemom. 2000;14:765–76. https://doi.org/10.1002/1099-128X(200009/12)14:5/6<765::AID-CEM625>3.0.CO;2-S.

  34. Heaton HI. Principal-components analysis of fluorescence cross-section spectra from pathogenic and simulant bacteria. Appl Opt. 2005;44:6486–95. https://doi.org/10.1364/AO.44.006486.

    Article  PubMed  Google Scholar 

  35. Estes C, Duncan A, Wade B, Lloyd C, Ellis W, Powers L. Reagentless detection of microorganisms by intrinsic fluorescence. Biosens Bioelectron. 2003;18:511–9. https://doi.org/10.1016/S0956-5663(03)00008-3.

    Article  CAS  PubMed  Google Scholar 

  36. Leblanc L, Dufour É. Monitoring the identity of bacteria using their intrinsic fluorescence. FEMS Microbiol Lett. 2002;211:147–53. https://doi.org/10.1111/j.1574-6968.2002.tb11217.x.

    Article  CAS  PubMed  Google Scholar 

  37. Ammor S, Yaakoubi K, Chevallier I, Dufour E. Identification by fluorescence spectroscopy of lactic acid bacteria isolated from a small-scale facility producing traditional dry sausages. J Microbiol Methods. 2004;59:271–81. https://doi.org/10.1016/j.mimet.2004.07.014.

    Article  CAS  PubMed  Google Scholar 

  38. Giana HE, Silveira L, Zângaro RA, Pacheco MTT. Rapid identification of bacterial species by fluorescence spectroscopy and classification through principal components analysis. J Fluoresc. 2003;13:489–93. https://doi.org/10.1023/B:JOFL.0000008059.74052.3c.

    Article  CAS  Google Scholar 

  39. Bhatta H, Goldys EM, Learmonth RP. Use of fluorescence spectroscopy to differentiate yeast and bacterial cells. Appl Microbiol Biotechnol. 2006;71:121–6. https://doi.org/10.1007/s00253-005-0309-y.

    Article  CAS  PubMed  Google Scholar 

  40. Shlosberg Y, Eichenbaum B, Tóth TN, Levin G, Liveanu V, Schuster G, Adir N. NADPH performs mediated electron transfer in cyanobacterial-driven bio-photoelectrochemical cells. iScience. 2020;24:101892.

    Article  Google Scholar 

  41. Shlosberg Y, Tóth TN, Eichenbaum B, Keysar L, Schuster G, Adir N. Electron mediation and photocurrent enhancement in Dunalliela salina driven bio-photo electrochemical cells. Catal. 2021;11:1220. https://doi.org/10.3390/CATAL11101220.

    Article  CAS  Google Scholar 

  42. Li Y, Zhang C, Xing D. Fast identification of foodborne pathogenic viruses using continuous-flow reverse transcription-PCR with fluorescence detection. Microfluid Nanofluidics. 2011;10:367–80. https://doi.org/10.1007/s10404-010-0675-3.

    Article  CAS  Google Scholar 

  43. Neuman KC, Chadd EH, Liou GF, Bergman K, Block SM. Characterization of photodamage to Escherichia coli in optical traps. Biophys J. 1999;77:2856–63. https://doi.org/10.1016/S0006-3495(99)77117-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bornstein E, Gridley S, Wengender P, Robbins A. Photodamage to multidrug-resistant gram-positive and gram-negative bacteria by 870 nm/930 nm light potentiates erythromycin, tetracycline and ciprofloxacin. Photochem Photobiol. 2010;86:617–27. https://doi.org/10.1111/j.1751-1097.2010.00725.x.

    Article  CAS  PubMed  Google Scholar 

  45. Liu G, Wu Y, Chen F, Shao C, Cheng Y, Gao H. A comparison of PMT-based and CCD-based sensors for electrochemiluminescence detection of sunset yellow in soft drinks. Food Chem. 2021;362: 130219. https://doi.org/10.1016/j.foodchem.2021.130219.

    Article  CAS  PubMed  Google Scholar 

  46. Lloyd JBF. Synchronized excitation of fluorescence emission spectra. Nat Phys Sci. 1971;231:64–5. https://doi.org/10.1038/physci231064a0.

    Article  CAS  Google Scholar 

  47. Lloyd JBF, Evett IW. Prediction of peak wavelengths and intensities in synchronously excited fluorescence emission spectra. Anal Chem. 1977;49:1710–5. https://doi.org/10.1021/ac50020a020.

    Article  CAS  Google Scholar 

  48. Rubio S, Gomez-Hens A, Valcarcel M. Analytical applications of synchronous fluorescence spectroscopy. Talanta. 1986;33:633–40. https://doi.org/10.1016/0039-9140(86)80149-7.

    Article  CAS  PubMed  Google Scholar 

  49. Zang T, Wu H, Zhang Y, Wei C. The response of polycyclic aromatic hydrocarbon degradation in coking wastewater treatment after bioaugmentation with biosurfactant-producing bacteria Pseudomonas aeruginosa S5. Water Sci Technol. 2021;83:1017–27. https://doi.org/10.2166/wst.2021.046.

    Article  CAS  PubMed  Google Scholar 

  50. Chen W, Zhang H, Zhang M, Shen X, Zhang X, Wu F, Hu J, Wang B, Wang X. Removal of PAHs at high concentrations in a soil washing solution containing TX-100 via simultaneous sorption and biodegradation processes by immobilized degrading bacteria in PVA-SA hydrogel beads. J Hazard Mater. 2021;410: 124533. https://doi.org/10.1016/j.jhazmat.2020.124533.

    Article  CAS  PubMed  Google Scholar 

  51. Qin Z, Zhao Z, Jiao W, Han Z, Xia L, Fang Y, Wang S, Ji L, Jiang Y. Phenanthrene removal and response of bacterial community in the combined system of photocatalysis and PAH-degrading microbial consortium in laboratory system. Bioresour Technol. 2020;301: 122736. https://doi.org/10.1016/j.biortech.2020.122736.

    Article  CAS  PubMed  Google Scholar 

  52. Zhang Y, Liu P, Li Y, Zhan R, Huang Z, Lin H. Study on fluorescence spectroscopy of PAHs with different molecular structures using laser-induced fluorescence (LIF) measurement and TD-DFT calculation. Spectrochim Acta Part A Mol Biomol Spectrosc. 2020;224: 117450. https://doi.org/10.1016/j.saa.2019.117450.

    Article  CAS  Google Scholar 

  53. Janke SA, Fortnagel P, Bergmann R. Microbiological turbidimetry using standard photometers. Biospektrum. 1999;6:501–2.

    Google Scholar 

  54. Breed RS, Dotterrer WD. The number of colonies allowable on satisfactory agar plates. J Bacteriol. 1916;1:321–31. https://doi.org/10.1128/jb.1.3.321-331.1916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sun F-L, Wang Y-S, Sun C-C, Peng Y-L, Deng C. Effects of three different PAHs on nitrogen-fixing bacterial diversity in mangrove sediment. Ecotoxicology. 2012;21:1651–60. https://doi.org/10.1007/s10646-012-0946-8.

    Article  CAS  PubMed  Google Scholar 

  56. Yang Y, He P, Wang Y, Bai H, Wang S, Xu J-F, Zhang X. Supramolecular radical anions triggered by bacteria in situ for selective photothermal therapy. Angew Chem Int Ed. 2017;56:16239–42. https://doi.org/10.1002/anie.201708971.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Israeli Ministry of Science and Technology, by the Office of the Chief Scientist, Israeli Ministry Economy, and by Technion—Israel Institute of Technology (VPR fund). The graphical abstract was created by BioRender.com.

Author information

Authors and Affiliations

Authors

Contributions

Y. Shlosberg and I. Schechter conceived the idea. Y. Shlosberg, S. Hasson, V. Bulatov, and I. Schechter designed the experiments. Y. Shlosberg and Y. Farber performed the main experiments. Y. Shlosberg wrote the paper. I. Schechter supervised the entire research project.

Corresponding author

Correspondence to Yaniv Shlosberg.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 229 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shlosberg, Y., Farber, Y., Hasson, S. et al. Identification of bacteria by poly-aromatic hydrocarbon biosensors. Anal Bioanal Chem 414, 3153–3160 (2022). https://doi.org/10.1007/s00216-022-03947-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-022-03947-2

Keywords

Navigation