Skip to main content
Log in

A pump-free microfluidic device for fast magnetic labeling of ischemic stroke biomarkers

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

This research proposes a low-cost and simple operation microfluidic chip to enhance the magnetic labeling efficiency of two ischemic stroke biomarkers: cellular fibronectin (c-Fn) and matrix metallopeptidase 9 (MMP9). This fully portable and pump-free microfluidic chip is operated based on capillary attractions without any external power source and battery. It uses an integrated cellulose sponge to absorb the samples. At the same time, a magnetic field is aligned to hold the target labeled by the magnetic nanoparticles (MNPs) in the pre-concentrated chamber. By using this approach, the specific targets are labeled from the beginning of the sampling process without preliminary sample purification. The proposed study enhanced the labeling efficiency from 1 h to 15 min. The dynamic interactions occur in the serpentine channel, while the crescent formation of MNPs in the pre-concentrated chamber, acting as a magnetic filter, improves the biomarker-MNP interaction. The labeling optimization by the proposed device influences the dynamic range by optimizing the MNP ratio to fit the linear range across the clinical cutoff value. The limits of detection (LODs) of 2.8 ng/mL and 54.6 ng/mL of c-Fn measurement were achieved for undiluted and four times dilutions of MNP, respectively. While for MMP9, the LODs were 11.5 ng/mL for undiluted functionalized MNP and 132 ng/mL for four times dilutions of functionalized MNP. The results highlight the potential use of this device for clinical sample preparation and specific magnetic target labeling. When combined with a detection system, it could also be used as an integrated component of a point-of-care platform.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

c-Fn:

Cellular fibronectin

MMP9:

Matrix metallopeptidase 9

MNP:

Magnetic nanoparticles

LOD:

Limit of detection

MR:

Magnetoresistive

rtPA:

Recombinant tissue plasminogen activator

PDMS:

Polydimethylsiloxane

PMMA:

Polymethyl methacrylate

CNC:

Computer numerical control

2D:

Two-dimensional

PVA:

Polyvinyl alcohol

PDMS-b-PEO:

Poly(Dimethylsiloxane-b-ethylene oxide) methyl terminated

SD:

Standard deviation

RT:

Room temperature

PPC:

Pores per centimeter

PB:

Phosphate buffer

PB-T:

Phosphate buffer with 0.05% Tween®20

BSA:

Bovine serum albumin

DI:

Deionized

References

  1. WHO (2021) Leading causes of death and disability: a visual summary of global and regional trends 2000-2019. https://www.who.int/data/stories/leading-causes-of-death-and-disability-2000-2019-a-visual-summary. Accessed 2 Jun 2021

  2. Campbell BCV, De Silva DA, Macleod MR, Coutts SB, Schwamm LH, Davis SM, Donnan GA. Ischaemic stroke. Nat Rev Dis Prim. 2019;5:70. https://doi.org/10.1038/s41572-019-0118-8.

    Article  PubMed  Google Scholar 

  3. Sacco RL, Kasner SE, Broderick JP, Caplan LR, Connors JJ, Culebras A, Elkind MSV, George MG, Hamdan AD, Higashida RT, Hoh BL, Janis LS, Kase CS, Kleindorfer DO, Lee JM, Moseley ME, Peterson ED, Turan TN, Valderrama AL, Vinters HV. An updated definition of stroke for the 21st century: a statement for healthcare professionals from the American heart association/American stroke association. Stroke. 2013;44:2064–89. https://doi.org/10.1161/STR.0b013e318296aeca.

    Article  PubMed  Google Scholar 

  4. Emberson J, Lees KR, Lyden P, Blackwell L, Albers G, Bluhmki E, Brott T, Cohen G, Davis S, Donnan G, Grotta J, Howard G, Kaste M, Koga M, Von Kummer R, Lansberg M, Lindley RI, Murray G, Olivot JM, Parsons M, Tilley B, Toni D, Toyoda K, Wahlgren N, Wardlaw J, Whiteley W, Del Zoppo GJ, Baigent C, Sandercock P, Hacke W. Effect of treatment delay, age, and stroke severity on the effects of intravenous thrombolysis with alteplase for acute ischaemic stroke: a meta-analysis of individual patient data from randomised trials. Lancet. 2014;384:1929–35. https://doi.org/10.1016/S0140-6736(14)60584-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Orset C, Arkelius K, Anfray A, Warfvinge K, Vivien D, Ansar S. Combination treatment with U0126 and rt-PA prevents adverse effects of the delayed rt-PA treatment after acute ischemic stroke. Sci Rep. 2021;11:11993. https://doi.org/10.1038/s41598-021-91469-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Orbán-Kálmándi R, Szegedi I, Sarkady F, Fekete I, Fekete K, Vasas N, Berényi E, Csiba L, Bagoly Z. A modified in vitro clot lysis assay predicts outcomes and safety in acute ischemic stroke patients undergoing intravenous thrombolysis. Sci Rep. 2021;11:613441. https://doi.org/10.1038/s41598-021-92041-1.

    Article  CAS  Google Scholar 

  7. Wardlaw JM, Murray V, Berge E, Del Zoppo G, Sandercock P, Lindley RL, Cohen G. Recombinant tissue plasminogen activator for acute ischaemic stroke: an updated systematic review and meta-analysis. Lancet. 2012;379:2364–72. https://doi.org/10.1016/S0140-6736(12)60738-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fernandes E, Sobrino T, Martins VC, Lopez-loureiro I, Campos F, Germano J, Rodríguez-Pérez M, Cardoso S, Petrovykh DY, Castillo J, Freitas PP. Point-of-care quantification of serum cellular fibronectin levels for stratification of ischemic stroke patients. Nanomed Nanotechnol Biol Med. 2020;30:102287. https://doi.org/10.1016/j.nano.2020.102287.

    Article  CAS  Google Scholar 

  9. Cowell TW, Valera E, Jankelow A, Park J, Schrader AW, Ding R, Berger J, Bashir R, Han HS. Rapid, multiplexed detection of biomolecules using electrically distinct hydrogel beads. Lab Chip. 2020;20:2274–83. https://doi.org/10.1039/d0lc00243g.

    Article  CAS  PubMed  Google Scholar 

  10. Kim S, Han S, Lee J. Asymmetric bead aggregation for microfluidic immunodetection. Lab Chip. 2017;17:2095–103. https://doi.org/10.1039/c7lc00138j.

    Article  CAS  PubMed  Google Scholar 

  11. Yaman S, Tekin HC (2020) Magnetic susceptibility-based protein detection using magnetic levitation. Anal Chem 92. https://doi.org/10.1021/acs.analchem.0c02479

  12. Beebe DJ, Mensing GA, Walker GM. Physics and applications of microfluidics in biology. Annu Rev Biomed Eng. 2002;4:261–86. https://doi.org/10.1146/annurev.bioeng.4.112601.125916.

    Article  CAS  PubMed  Google Scholar 

  13. Chuang CH, Chiang YY. Bio-O-Pump: a novel portable microfluidic device driven by osmotic pressure. Sensors Actuators, B Chem. 2019;284:736–43. https://doi.org/10.1016/j.snb.2019.01.020.

    Article  CAS  Google Scholar 

  14. Tan W, Powles E, Zhang L, Shen W (2021) Go with the capillary flow. Simple thread-based microfluidics. Sensors Actuators, B Chem 334. https://doi.org/10.1016/j.snb.2021.129670

  15. Lin YH, Chang CH. Glass capillary assembled microfluidic three-dimensional hydrodynamic focusing device for fluorescent particle detection. Microfluid Nanofluidics. 2021;25:42. https://doi.org/10.1007/s10404-021-02441-y.

    Article  CAS  Google Scholar 

  16. Zhou T, Yang J, Zhu D, Zheng J, Handschuh-Wang S, Zhou X, Zhang J, Liu Y, Liu Z, He C, Zhou X. Hydrophilic sponges for leaf-inspired continuous pumping of liquids. Adv Sci. 2017;4:1700028. https://doi.org/10.1002/advs.201700028.

    Article  CAS  Google Scholar 

  17. Ulum MF, Maylina L, Noviana D, Wicaksono DHB. EDTA-treated cotton-thread microfluidic device used for one-step whole blood plasma separation and assay. Lab Chip. 2016;16:1492–504. https://doi.org/10.1039/c6lc00175k.

    Article  CAS  PubMed  Google Scholar 

  18. Jia C, Jiang F, Hu P, Kuang Y, He S, Li T, Chen C, Murphy A, Yang C, Yao Y, Dai J, Raub CB, Luo X, Hu L. Anisotropic, mesoporous microfluidic frameworks with scalable, aligned cellulose nanofibers. ACS Appl Mater Interfaces. 2018;10:7362–70. https://doi.org/10.1021/acsami.7b17764.

    Article  CAS  PubMed  Google Scholar 

  19. Jang I, Carraõ DB, Menger RF, Moraes De Oliveira AR, Henry CS. Pump-free microfluidic rapid mixer combined with a paper-based channel. ACS Sensors. 2020;5:2230–8. https://doi.org/10.1021/acssensors.0c00937.

    Article  CAS  PubMed  Google Scholar 

  20. He Y, Gao Q, Bin WuW, Nie J, Fu JZ. 3D printed paper-based microfluidic analytical devices. Micromachines. 2016;7:108. https://doi.org/10.3390/mi7070108.

    Article  PubMed Central  Google Scholar 

  21. Ratajczak K, Stobiecka M (2020) High-performance modified cellulose paper-based biosensors for medical diagnostics and early cancer screening: a concise review. Carbohydr Polym 229

  22. Purwidyantri A, Karina M, Hsu C-H, Srikandace Y, Prabowo BA, Lai C-S. Facile bacterial cellulose nanofibrillation for the development of plasmonic paper sensor. ACS Biomater Sci Eng. 2020;6:3122–31. https://doi.org/10.1021/acsbiomaterials.9b01890.

    Article  CAS  PubMed  Google Scholar 

  23. Meng X, Dong Y, Zhao Y, Liang L. Preparation and modification of cellulose sponge and application of oil/water separation. RSC Adv. 2020;10:41713–9. https://doi.org/10.1039/d0ra07910c.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Du Y, Cheng H, Li Y, Wang B, Mao Z, Xu H, Zhang L, Zhong Y, Yan X, Sui X. Temperature-responsive cellulose sponge with switchable pore size: application as a water flow manipulator. Mater Lett. 2018;210:337–40. https://doi.org/10.1016/j.matlet.2017.09.012.

    Article  CAS  Google Scholar 

  25. Martins VC, Cardoso FA, Germano J, Cardoso S, Sousa L, Piedade M, Freitas PP, Fonseca LP. Femtomolar limit of detection with a magnetoresistive biochip. Biosens Bioelectron. 2009;24:2690–5. https://doi.org/10.1016/j.bios.2009.01.040.

    Article  CAS  PubMed  Google Scholar 

  26. Martins SAM, Martins VC, Cardoso FA, Germano J, Rodrigues M, Duarte C, Bexiga R, Cardoso S, Freitas PP. Biosensors for on-farm diagnosis of mastitis. Front Bioeng Biotechnol. 2019;7:186. https://doi.org/10.3389/fbioe.2019.00186.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Graham DL, Ferreira HA, Freitas PP (2004) Magnetoresistive-based biosensors and biochips. Trends Biotechnol 22

  28. Freitas PP, Cardoso FA, Martins VC, Martins SAM, Loureiro J, Amaral J, Chaves RC, Cardoso S, Fonseca LP, Sebastião AM, Pannetier-Lecoeur M, Fermon C (2012) Spintronic platforms for biomedical applications. Lab Chip 12

  29. Armbruster DA, Pry T. Limit of blank, limit of detection and limit of quantitation. Clin Biochem Rev. 2008;29(Suppl 1):S49-52.

    PubMed  PubMed Central  Google Scholar 

  30. Trantidou T, Elani Y, Parsons E, Ces O. Hydrophilic surface modification of pdms for droplet microfluidics using a simple, quick, and robust method via pva deposition. Microsyst Nanoeng. 2017;3:16091. https://doi.org/10.1038/micronano.2016.91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Shakeri A, Khan S, Didar TF. Conventional and emerging strategies for the fabrication and functionalization of PDMS-based microfluidic devices. Lab Chip. 2021;21:3053–75. https://doi.org/10.1039/D1LC00288K.

    Article  CAS  PubMed  Google Scholar 

  32. Hasanuzzaman M, Rafferty A, Sajjia M, Olabi A-G (2016) Properties of glass materials. Ref Modul Mater Sci Mater Eng 1–12. https://doi.org/10.1016/b978-0-12-803581-8.03998-9

  33. Tsige M, Soddemann T, Rempe SB, Grest GS, Kress JD, Robbins MO, Sides SW, Stevens MJ, Webb E. Interactions and structure of poly(dimethylsiloxane) at silicon dioxide surfaces: electronic structure and molecular dynamics studies. J Chem Phys. 2003;118:5132–42. https://doi.org/10.1063/1.1545091.

    Article  CAS  Google Scholar 

  34. Vlachopoulou ME, Petrou PS, Kakabakos SE, Tserepi A, Beltsios K, Gogolides E. Effect of surface nanostructuring of PDMS on wetting properties, hydrophobic recovery and protein adsorption. Microelectron Eng. 2009;86:1321–4. https://doi.org/10.1016/j.mee.2008.11.050.

    Article  CAS  Google Scholar 

  35. Vlassov S, Oras S, Antsov M, Sosnin I, Polyakov B, Shutka A, Dorogin LM, Roberts C, Graham A, Nemer M, Phinney L, Garcia R, Stirrup E, Russell MT, Pingree LSC, Hersam MC, Marks TJ, Xu W, Chahine N, Sulchek T, Klasner SA, Metto EC, Roman GT, Culbertson CT, Lötters JC, Olthuis W, Veltink PH, Bergveld P (2011) Physical properties of low-molecular weight polydimethylsiloxane fluids. Langmuir 25

  36. Yao M, Fang J. Hydrophilic PEO-PDMS for microfluidic applications. J Micromech Microeng. 2012;22:025012. https://doi.org/10.1088/0960-1317/22/2/025012.

    Article  CAS  Google Scholar 

  37. Klasner SA, Metto EC, Roman GT, Culbertson CT. Synthesis and characterization of a poly(dimethylsiloxane)-poly (ethylene oxide) block copolymer for fabrication of amphiphilic surfaces on microfluidic devices. Langmuir. 2009;25:10390–6. https://doi.org/10.1021/la900920q.

    Article  CAS  PubMed  Google Scholar 

  38. Emoto A, Kobayashi T, Noguchi N, Fukuda T. Tailoring adhesive forces between poly(dimethylsiloxane) and glass substrates using poly(vinyl alcohol) primers. J Appl Polym Sci. 2014;131:1–7. https://doi.org/10.1002/app.39927.

    Article  CAS  Google Scholar 

  39. Yu K, Han Y. A stable PEO-tethered PDMS surface having controllable wetting property by a swelling-deswelling process. Soft Matter. 2006;2:705–9. https://doi.org/10.1039/b602880m.

    Article  CAS  PubMed  Google Scholar 

  40. Iwasaki S, Kawasaki H, Iwasaki Y. Label-free specific detection and collection of C-reactive protein using zwitterionic phosphorylcholine-polymer-protected magnetic nanoparticles. Langmuir. 2019;35:1749–55. https://doi.org/10.1021/acs.langmuir.8b01007.

    Article  CAS  PubMed  Google Scholar 

  41. Nirala NR, Harel Y, Lellouche JP, Shtenberg G. Ultrasensitive haptoglobin biomarker detection based on amplified chemiluminescence of magnetite nanoparticles. J Nanobiotechnol. 2020;18:6. https://doi.org/10.1186/s12951-019-0569-9.

    Article  CAS  Google Scholar 

  42. Silva Y, Leira R, Tejada J, Lainez JM, Castillo J, Dávalos A. Molecular signatures of vascular injury are associated with early growth of intracerebral hemorrhage. Stroke. 2005;36:86–91. https://doi.org/10.1161/01.STR.0000149615.51204.0b.

    Article  PubMed  Google Scholar 

  43. Castellanos M, Sobrino T, Millán M, García M, Arenillas J, Nombela F, Brea D, Perez De La Ossa N, Serena J, Vivancos J, Castillo J, Dávalos A. Serum cellular fibronectin and matrix metalloproteinase-9 as screening biomarkers for the prediction of parenchymal hematoma after thrombolytic therapy in acute ischemic stroke: a multicenter confirmatory study. Stroke. 2007;38:1855–9. https://doi.org/10.1161/STROKEAHA.106.481556.

    Article  CAS  PubMed  Google Scholar 

  44. NCBI (2021) MMP9 matrix metallopeptidase 9 [ Homo sapiens (human) ]. In: Natl. Cent. Biotechnol. Information, U.S. Natl. Libr. Med. https://www.ncbi.nlm.nih.gov/gene/4318. Accessed 1 Jun 2021

  45. Bradshaw AD (2016) The extracellular matrix. In: Encyclopedia of cell biology. Elsevier Ltd., pp 694–703

  46. Zordan MD, Grafton MMG, Acharya G, Reece LM, Aronson AI, Park K, Leary JF. A microfluidic-based hybrid SPR/molecular imaging biosensor for the multiplexed detection of foodborne pathogens. Front Pathog Detect Nanosensors Syst. 2009;7553:716706. https://doi.org/10.1117/12.808316.

    Article  Google Scholar 

  47. Lee TY, Shin Y, Park MK. A simple, low-cost, and rapid device for a DNA methylation-specific amplification/detection system using a flexible plastic and silicon complex. Lab Chip. 2014;14:4220–9. https://doi.org/10.1039/c4lc00804a.

    Article  CAS  PubMed  Google Scholar 

  48. Hou Y, Tang W, Qi W, Guo X, Lin J. An ultrasensitive biosensor for fast detection of Salmonella using 3D magnetic grid separation and urease catalysis. Biosens Bioelectron. 2020;157:112160. https://doi.org/10.1016/j.bios.2020.112160.

    Article  CAS  PubMed  Google Scholar 

  49. Tsai HY, Hsu FH, Lin YP, Fuh CB. Separation method based on affinity reaction between magnetic and nonmagnetic particles for the analysis of particles and biomolecules. J Chromatogr A. 2006;1130:227–31. https://doi.org/10.1016/j.chroma.2006.05.045.

    Article  CAS  PubMed  Google Scholar 

  50. Tsai HY, Hsieh YC, Su YM, Chan JR, Chang YC, Fuh CB. Effects of particle characteristics on magnetic immunoassay in a thin channel. Biosens Bioelectron. 2011;28:38–43. https://doi.org/10.1016/j.bios.2011.06.038.

    Article  CAS  PubMed  Google Scholar 

  51. Sofla A, Cirkovic B, Hsieh A, Miklas JW, Filipovic N, Radisic M. Enrichment of live unlabelled cardiomyocytes from heterogeneous cell populations using manipulation of cell settling velocity by magnetic field. Biomicrofluidics. 2013;7:14110. https://doi.org/10.1063/1.4791649.

    Article  CAS  PubMed  Google Scholar 

  52. Kim J, Lee HH, Steinfeld U, Seidel H. Fast capturing on micromagnetic cell sorter. IEEE Sens J. 2009;9:908–13. https://doi.org/10.1109/JSEN.2009.2024863.

    Article  Google Scholar 

  53. Zeng L, Chen X, Du J, Yu Z, Zhang R, Zhang Y, Yang H. Label-free separation of nanoscale particles by an ultrahigh gradient magnetic field in a microfluidic device. Nanoscale. 2021;13:4029–37. https://doi.org/10.1039/d0nr08383f.

    Article  CAS  PubMed  Google Scholar 

  54. Hermann CA, Mayer M, Griesche C, Beck F, Baeumner AJ. Microfluidic-enabled magnetic labelling of nanovesicles for bioanalytical applications. Analyst. 2021;146:997–1003. https://doi.org/10.1039/d0an02027c.

    Article  CAS  PubMed  Google Scholar 

  55. Hoshino K, Huang YY, Lane N, Huebschman M, Uhr JW, Frenkel EP, Zhang X. Microchip-based immunomagnetic detection of circulating tumor cells. Lab Chip. 2011;11:3449–57. https://doi.org/10.1039/c1lc20270g.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bhuvanendran Nair Gourikutty S, Chang CP, Puiu PD. Microfluidic immunomagnetic cell separation from whole blood. J Chromatogr B Anal Technol Biomed Life Sci. 2016;1011:77–88. https://doi.org/10.1016/j.jchromb.2015.12.016.

    Article  CAS  Google Scholar 

  57. Otieno BA, Krause CE, Latus A, Chikkaveeraiah BV, Faria RC, Rusling JF. On-line protein capture on magnetic beads for ultrasensitive microfluidic immunoassays of cancer biomarkers. Biosens Bioelectron. 2014;53:268–74. https://doi.org/10.1016/j.bios.2013.09.054.

    Article  CAS  PubMed  Google Scholar 

  58. Grafton MM, Zordan MD, Chuang H-S, Rajdev P, Reece LM, Irazoqui PP, Wereley ST, Byrnes R, Todd P, Leary JF. Portable microfluidic cytometer for whole blood cell analysis. Microfluid BioMEMS, Med Microsystems VIII. 2010;7593:75930M. https://doi.org/10.1117/12.842932.

    Article  CAS  Google Scholar 

  59. Vojtíšek M, Iles A, Pamme N. Rapid, multistep on-chip DNA hybridisation in continuous flow on magnetic particles. Biosens Bioelectron. 2010;25:2172–6. https://doi.org/10.1016/j.bios.2010.01.034.

    Article  CAS  PubMed  Google Scholar 

  60. Zeng J, Chen C, Vedantam P, Tzeng TR, Xuan X. Magnetic concentration of particles and cells in ferrofluid flow through a straight microchannel using attracting magnets. Microfluid Nanofluidics. 2013;15:49–55. https://doi.org/10.1007/s10404-012-1126-0.

    Article  CAS  Google Scholar 

  61. Liang L, Xuan X. Diamagnetic particle focusing using ferromicrofluidics with a single magnet. Microfluid Nanofluidics. 2012;13:637–43. https://doi.org/10.1007/s10404-012-1003-x.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by Fundação para a Ciência e a Tecnologia (FCT) through project FIM4Stroke (reference PTDC/MEC-URG/29561/2017).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Elisabete Fernandes or Paulo Freitas.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 573 KB)

Supplementary Video 1 (MP4 26509 KB)

Supplementary Video 2 (MP4 11396 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prabowo, B.A., Fernandes, E. & Freitas, P. A pump-free microfluidic device for fast magnetic labeling of ischemic stroke biomarkers. Anal Bioanal Chem 414, 2571–2583 (2022). https://doi.org/10.1007/s00216-022-03915-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-022-03915-w

Keywords

Navigation