Skip to main content
Log in

Red-emission carbon dots as fluorescent “on–off–on” probe for highly sensitive and selective detection of Cu2+ and glutathione

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A highly sensitive and selective fluorescent “on–off–on” strategy is established for the synchronous detection of Cu2+ and glutathione in aqueous solution. Red carbon dots (R-CDs) were prepared by using precursors of 4,5-difluoro-1,2-phenylenediamine and citric acid via a one-step hydrothermal strategy. R-CDs show a relatively long fluorescence lifetime of 3.47 ns under 455 nm excitation and high absolute fluorescent quantum yield of 20.1% with an excitation wavelength of 550 nm. R-CDs exhibit a marked pH-responsive fluorescence property with no significant perturbation from pH 4 to pH 13 even after five cycles. R-CDs with higher concentration of 750 μg·mL−1 exhibit no significant cytotoxicity and good biocompatibility on HeLa cells and A549 cells after incubation for 48 h. The fluorescence of R-CDs at 619 nm (excited at 550 nm) is quenched statically by Cu2+ and recovered by glutathione subsequently, resulting in a fluorescent “on–off–on” assay for the synchronous detection of Cu2+ and glutathione. Under optimal conditions, the linear response covers the Cu2+ concentration range of 1 to 50 μM and the glutathione concentration range of 1 to 70 μM. Detection limits of Cu2+ and glutathione are 0.16 and 0.41 μM, respectively. This fluorescent probe is applied to the determination of Cu2+ and glutathione in authentic samples with satisfying results. Such an assay broadens the potential application of CDs in environmental areas and clinical therapy fields.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zong J, Yang XL, Trinchi A, Hardin S, Cole I, Zhu YH, Li CZ, Muster T, Wei G. Carbon dots as fluorescent probes for “off-on” detection of Cu2+ and L-cysteine in aqueous solution. Biosens Bioelectron. 2014;51:330–5.

    Article  CAS  PubMed  Google Scholar 

  2. S.P. Huang, W.X. Wang, J.W. Cheng, X. Zhou, M.Y. Xie, Q. Luo, D. Yang, Y.F. Zhou, H.Y. Wen, W.M. Xue, Amino-functional carbon quantum dots as a rational nanosensor for Cu2+, Microchem. J. 159 (2020) 105494.

  3. Sun S, Chen Q, Tang ZD, Liu C, Li ZJ, Wu AG, Lin HW. Tumor microenvironment stimuli-responsive fluorescence imaging and synergistic cancer therapy by carbon-dot-Cu2+ nanoassemblies. Angew Chem Int Edit. 2020;132:21041–8.

    Article  Google Scholar 

  4. Xu D, Lin QL, Chang HT. Recent advances and sensing applications of carbon dots. Small Methods. 2019;4:1900387.

    Article  Google Scholar 

  5. Ding H, Zhou XX, Wei JS, Li XB, Qin BT, Chen XB, Xiong HM. Carbon dots with red/near-infrared emissions and their intrinsic merits for biomedical applications. Carbon. 2020;167:322–44.

    Article  CAS  Google Scholar 

  6. Gao WL, Song HH, Wang X, Liu XQ, Pang XB, Zhou YM, Gao B, Peng XJ. Carbon dots with red emission for sensing of Pt2+, Au3+, and Pd2+ and their bioapplications in vitro and in vivo. ACS Appl Mater Interfaces. 2018;10:1147–54.

    Article  CAS  PubMed  Google Scholar 

  7. L. Li, L. H. Shi, J. Jia, O. Eltayeb, W.J. Lu, Y.H. Tang, C. Dong, S.M. Shuang, Red fluorescent carbon dots for tetracycline antibiotics and pH discrimination from aggregation-induced emission mechanism, Sens. Actuators, B 332 (2021) 129513.

  8. Zhang YH, Wu YG, Wang J, Hu Y, Fang WH, Dang JQ, Wu Y, Li XJ, Zhao H, Li ZX. Optimization of ionic liquid-mediated red-emission carbon dots and their imaging application in living cells. ACS Sustainable Chem Eng. 2020;8:16979–89.

    Article  CAS  Google Scholar 

  9. Huang S, Yang EL, Yao JD, Liu Y, Xiao Q. Red emission nitrogen, boron, sulfur co-doped carbon dots for “on-off-on” fluorescent mode detection of Ag+ ions and L-cysteine in complex biological fluids and living cells. Anal Chim Acta. 2018;1035:192–202.

    Article  CAS  PubMed  Google Scholar 

  10. Pan LL, Sun S, Zhang L, Jiang K, Lin HW. Near-infrared emissive carbon dots for two-photon fluorescence bioimaging. Nanoscale. 2016;8:17350–6.

    Article  CAS  PubMed  Google Scholar 

  11. Dong XY, Niu XQ, Zhang ZY, Wei JS, Xiong HM. Red fluorescent carbon dot powder for accurate latent fingerprint identification using an artificial intelligence program. ACS Appl Mater Interfaces. 2020;12:29549–55.

    CAS  PubMed  Google Scholar 

  12. Sun S, Zhang L, Jiang K, Wu AG, Lin HW. Toward high-efficient red emissive carbon dots: facile preparation, unique properties, and applications as multifunctional theranostic agents. Chem Mater. 2016;28:8659–68.

    Article  CAS  Google Scholar 

  13. R N. Jia, K.F. Jin, J.M. Zhang, X.J. Zheng, S. Wang, J. Zhang, Colorimetric and fluorescent detection of glutathione over cysteine and homocysteine with red-emitting N-doped carbon dots, Sens. Actuators, B 321 (2020) 128506.

  14. Waggoner DJ, Bartnikas TB, Gitlin JD. The role of copper in neurodegenerative disease. Neurobiol Dis. 1999;6:221–30.

    Article  CAS  PubMed  Google Scholar 

  15. Wang SJ, Liu CC, Li GY, Sheng YJ, Sun YH, Rui HY, Zhang J, Xu JC, Jiang DZ. The triple roles of glutathione for a DNA-cleaving DNAzyme and development of a fluorescent glutathione/Cu2+-dependent DNAzyme sensor for detection of Cu2+ in drinking water. ACS Sens. 2017;2:364–70.

    Article  CAS  PubMed  Google Scholar 

  16. Georgopoulos PG, Wang SW, Georgopoulos IG, Yonone-Lioy MJ, Lioy PJ. Assessment of human exposure to copper: a case study using the NHEXAS database. J Expo Sci Environ Epidemiol. 2006;16:397–409.

    Article  CAS  PubMed  Google Scholar 

  17. Yin GX, Niu TT, Gan YB, Yu T, Yin P, Chen HM, Zhang YY, Li HT, Yao SZ. A multi-signal fluorescent probe with multiple binding sites for simultaneous sensing of cysteine, homocysteine, and glutathione. Angew Chem Int Edit. 2018;57:4991–4.

    Article  CAS  Google Scholar 

  18. R. Jalili, A. Khataee, M.R. Rashidi, R. Luque, Dual-colored carbon dot encapsulated metal-organic framework for ratiometric detection of glutathione, Sens. Actuators, B 297 (2019) 126775.

  19. Khalkho BR, Kurrey R, Deb MK, Karbhal I, Sahu B, Sinha S, Sahu YK, Jain VK. A simple and convenient dry-state SEIRS method for glutathione detection based on citrate functionalized silver nanoparticles in human biological fluids. New J Chem. 2021;45:1339–54.

    Article  CAS  Google Scholar 

  20. Zhu XC, Kalyanaraman N, Subramanian R. Enhanced screening of glutathione-trapped reactive metabolites by in-source collision-induced dissociation and extraction of product ion using UHPLC-high resolution mass spectrometry. Anal Chem. 2011;83:9516–23.

    Article  CAS  PubMed  Google Scholar 

  21. Bagheri N, Mazzaracchio V, Cinti S, Colozza N, Natale CD, Netti PA, Saraji M, Roggero S, Moscone D, Arduini F. Electroanalytical sensor based on gold-nanoparticle-decorated paper for sensitive detection of copper ions in sweat and serum. Anal Chem. 2021;93:5225–33.

    Article  CAS  PubMed  Google Scholar 

  22. K.L. Chan, K. Snoussi, R.A.E. Edden, P.B. Barker, Simultaneous detection of glutathione and lactate using spectral editing at 3 T, NMR Biomed. 30 (2017) e3800.

  23. A. Tsiasioti, A.S. Zotou, P.D. Tzanavaras, Single run analysis of glutathione and its disulfide in food samples by liquid chromatography coupled to on-line post-column derivatization, Food Chem. 361 (2021) 130173.

  24. Han L, Liu SG, Liang JY, Li NB, Luo HQ. Free-label dual-signal responsive optical sensor by combining resonance Rayleigh scattering and colorimetry for sensitive detection of glutathione based on ultrathin MnO2 nanoflakes. Sens Actuators, B. 2019;288:195–201.

    Article  CAS  Google Scholar 

  25. H.S. No, T. Kim, J.I. Hong, Iridium(III) complex-based phosphorescent and electrochemiluminescent dual sensor for selective detection of glutathione, Sens. Actuators, B 342 (2021) 129868.

  26. T. Luo, L.L. Bu, S.Y. Peng, Y.Y. Zhang, Z. Zhou, G.R. Li, J. Huang, One-step microwave-assisted preparation of oxygen-rich multifunctional carbon quantum dots and their application for Cu2+-curcumin detection, Talanta 205 (2019) 120117.

  27. Singh VR, Singh PK. A novel supramolecule-based fluorescence turn-on and ratiometric sensor for highly selective detection of glutathione over cystein and homocysteine. Microchim Acta. 2020;187:631.

    Article  CAS  Google Scholar 

  28. Zhao HM, Wen XP, Li WY, Li YQ, Yin CX. A copper-mediated on-off-on gold nanocluster for endogenous GSH sensing to drive cancer cell recognition. J Mater Chem B. 2019;7:2169–76.

    Article  CAS  PubMed  Google Scholar 

  29. B.Y. Zhang, Q.Q. Duan, Y. Li, Y.X. Zhang, M.X. Che, W.D. Zhang, S.B. Sang, A “turn-on” fluorescent probe for glutathione detection based on the polyethylenimine-carbon dots-Cu2+ system, J. Photoch. Photobio. B 197 (2019) 111532.

  30. Guo Y, Yang LL, Li WW, Wang XF, Shang YH, Li BX. Carbon dots doped with nitrogen and sulfur and loaded with copper(II) as a “turn-on” fluorescent probe for cystein, glutathione and homocysteine. Microchim Acta. 2016;183:1409–16.

    Article  CAS  Google Scholar 

  31. Z. Han, D.Y. Nan, H. Yang, Q.Q. Sun, S. Pan, H. Liu, X.L. Hu, Carbon quantum dots based ratiometric fluorescence probe for sensitive and selective detection of Cu2+ and glutathione, Sens. Actuators, B 298 (2019) 126842.

  32. F.M. Yang, P. Zhou, C.Y. Duan, Solid-phase synthesis of red dual-emissive nitrogen-doped carbon dots for the detection of Cu2+ and glutathione, Microchem. J. 169 (2021) 106534.

  33. Lan MH, Di YF, Zhu XY, Ng TW, Xia J, Liu WM, Meng XM, Wang PF, Lee CS, Zhang WJ. A carbon dot-based fluorescence turn-on sensor for hydrogen peroxide with a photo-induced electron transfer mechanism. Chem Commun. 2015;51:15574–7.

    Article  CAS  Google Scholar 

  34. Li HG, Su DD, Gao H, Yan X, Kong DS, Jin R, Liu XM, Wang CG, Lu GY. Design of red emissive carbon dots: robust performance for analytical applications in pesticide monitoring. Anal Chem. 2020;92:3198–205.

    Article  CAS  PubMed  Google Scholar 

  35. Huang S, Yao JD, Chu X, Ning G, Zhou ZQ, Liu Y, Xiao Q. A ratiometric fluorescent assay for evaluation of alkaline phosphatase activity based on ionic liquid-functionalized carbon dots. Microchim Acta. 2020;187:271.

    Article  CAS  Google Scholar 

  36. Huang S, Yao JD, Chu X, Liu Y, Xiao Q, Zhang Y. A ratiometric fluorescent probe for evaluation of acetylcholinesterase activity and detection of organophosphorus pesticides in tap water and food. J Agric Food Chem. 2019;67:11244–55.

    Article  CAS  PubMed  Google Scholar 

  37. Wang RX, Wang XF, Sun YM. One-step synthesis of self-doped carbon dots with highly photoluminescence as multifunctional biosensors for detection of iron ions and pH. Sens Actuators, B. 2017;241:73–9.

    Article  CAS  Google Scholar 

  38. X.B. Li, C.F. Chai, Y.L. Zhang, Y.K. Wang, J.J. Lv, W. Biao, M.M.F. Choi, Microwave synthesis of nitrogen and sulfur co-doped carbon dots for the selective detection of Hg2+ and glutathione, Opt. Mater. 99 (2020) 109559.

  39. US Environmental Protection Agency, National Primary Drinking Water Regulations, EPA 816-F-09–004, 2009.

  40. Huang GG, Yang J. Selective detection of copper ions in aqueous solution based on an evanescent wave infrared absorption spectroscopic method. Anal Chem. 2003;75:2262–9.

    Article  CAS  PubMed  Google Scholar 

  41. Lin M, Hu XK, Ma ZH, Chen LX. Functionalized polypyrrole nanotube arrays as electrochemical biosensor for the determination of copper ions. Anal Chim Acta. 2012;746:63–9.

    Article  CAS  PubMed  Google Scholar 

  42. Rong MC, Zhang KX, Wang YR, Chen X. The synthesis of B, N-carbon dots by a combustion method and the application of fluorescence detection for Cu2+. Chin Chem Lett. 2017;28:1119–24.

    Article  CAS  Google Scholar 

  43. Ganiga M, Cyriac J. Understanding the photoluminescence mechanism of nitrogen-doped carbon dots by selective interaction with copper ions. ChemPhysChem. 2016;17:2315–21.

    Article  CAS  PubMed  Google Scholar 

  44. Wang FX, Gu ZY, Lei W, Wang WJ, Xia XF, Hao QL. Graphene quantum dots as a fluorescent sensing platform for highly efficient detection of copper(II) ions. Sens Actuators, B. 2014;190:516–22.

    Article  CAS  Google Scholar 

  45. Lv WY, Lin M, Li RS, Zhang QQ, Liu H, Wang J, Huang CZ. Aggregation-induced emission enhancement of yellow photoluminescent carbon dots for highly selective detection of environmental and intracellular copper(II) ions. Chin Chem Lett. 2019;30:1410–4.

    Article  CAS  Google Scholar 

  46. Lu WJ, Gao YF, Jiao Y, Shuang SM, Li CZ, Dong C. Carbon nano-dots as a fluorescent and colorimetric dual-readout probe for the detection of arginine and Cu2+ and its logic gate operation. Nanoscale. 2017;9:11545–52.

    Article  CAS  PubMed  Google Scholar 

  47. Ma X, Lin SJ, Dang YF, Dai Y, Zhang XJ, Xia F. Carbon dots as an “on-off-on” fluorescent probe for detection of Cu(II) ion, ascorbic acid, and acid phosphatase. Anal Bioanal Chem. 2019;411:6645–53.

    Article  CAS  PubMed  Google Scholar 

  48. Zhao L, Li HY, Xu Y, Liu HC, Zhou TY, Huang N, Li Y, Ding L. Selective detection of copper ion in complex real samples based on nitrogen-doped carbon quantum dots. Anal Bioanal Chem. 2018;410:4301–9.

    Article  CAS  PubMed  Google Scholar 

  49. Kumar A, Kumar V, Diwan U, Upadhyay KK. Highly sensitive and selective naked-eye detection of Cu2+ in aqueous medium by a ninhydrin-quinoxaline derivative. Sens Actuators, B. 2013;176:420–7.

    Article  CAS  Google Scholar 

  50. X. Chen, J.L. Bai, G.J. Yuan, L. Zhang, L.L. Ren, One-pot preparation of nitrogen-doped carbon dots for sensitive and selective detection of Ag+ and glutathione, Microchem. J. 165 (2021) 106156.

  51. Soha N, Maity B, Basu S. Carbon dot-MnO2 nanosphere composite sensors for selective detection of glutathione. ACS Appl Nano Mater. 2020;3:5955–64.

    Article  Google Scholar 

  52. Pan JH, Zheng ZY, Yang JY, Wu YY, Lu FS, Chen YW, Gao WH. A novel and sensitive fluorescence sensor for glutathione detection by controlling the surface passivation degree of carbon quantum dots. Talanta. 2017;166:1–7.

    Article  CAS  PubMed  Google Scholar 

  53. Li J, Wang YH, Sun S, Lv AM, Jiang K, Li YK, Li ZJ, Lin HW. Disulfide bond-based self-crosslinked carbon-dots for turn-on fluorescence imaging of GSH in living cells. Analyst. 2020;145:2982–7.

    Article  CAS  PubMed  Google Scholar 

  54. Chen S, Xu CH, Yu YL, Wang JH. Multichannel fluorescent sensor array for discrimination of thiols using carbon dot-metal ion pairs. Sens Actuators, B. 2018;266:553–60.

    Article  CAS  Google Scholar 

  55. Gao XH, Li XH, Li LH, Zhou J, Ma HM. A simple fluorescent off-on probe for the discrimination of cysteine from glutathione. Chem Commun. 2015;51:9388–90.

    Article  CAS  Google Scholar 

  56. Lee PT, Goncalves LM, Compton RG. Electrochemical determination of free and total glutathione in human saliva samples. Sens Actuators, B. 2015;221:962–8.

    Article  CAS  Google Scholar 

  57. Xu F, Chen X, Chai R, Xing CF, Li HR, Yin XB. A magnetic/fluorometric bimodal sensor based on a carbon dots-MnO2 platform for glutathione detection. Nanoscale. 2016;8:13141–421.

    Article  Google Scholar 

  58. Han BY, Yuan JP, Wang EK. Sensitive and selective sensor for biothiols in the cell based on the recovered fluorescence of the CdTe quantum dots-Hg(II) system. Anal Chem. 2009;81:5569–73.

    Article  CAS  PubMed  Google Scholar 

  59. Huang YY, Zhou J, Feng H, Zheng JY, Ma HM, Liu WD, Tang C, Ao H, Zhao MZ, Qian ZS. A dual-channel fluorescent chemosensor for discriminative detection of glutathione based on functionalized carbon quantum dots. Biosens Bioelectron. 2016;86:748–55.

    Article  CAS  PubMed  Google Scholar 

  60. Cai QY, Li J, Ge J, Zhang L, Hu YL, Li ZH, Qu LB. A rapid fluorescence “switch-on” assay for glutathione detection by using carbon dots-MnO2 nanocomposites. Biosens Bioelectron. 2015;72:31–6.

    Article  CAS  PubMed  Google Scholar 

  61. Chu SY, Wang HQ, Du YX, Yang F, Yang L, Jiang CL. Portable smartphone platform integrated with a nanoprobe-based fluorescent paper strip: visual monitoring of glutathione in human serum for health prognosis. ACS Sustainable Chem Eng. 2020;8:8175–83.

    Article  CAS  Google Scholar 

  62. Hanko M, Švorc Ĺ, Planková A, Mikuš P. Overview and recent advances in electrochemical sensing of glutathione—a review. Anal Chim Acta. 2019;1062:1–27.

    Article  CAS  PubMed  Google Scholar 

  63. R. Zhang, J.X. Yong, J.L. Yuan, Z.P. Xu, Recent advances in the development of responsive probes for selective detection of cysteine, Coordin. Chem. Rev. 408 (2020) 213182.

Download references

Funding

This work was financially supported by National Natural Science Foundation of China (21763005, 21864006, 22164014), Natural Science Foundation of Guangxi Province (2017GXNSFDA198034, 2017GXNSFFA198005, 2021GXNSFAA075015), Thousands of Young Teachers Training Program of Guangxi Province (guijiaoren[2018]18), and BAGUI Scholar Program of Guangxi Province of China.

The authors declare that they have no conflict of interests. The authors declare that all experiments were performed in compliance with the relevant laws and institutional guidelines of China (WS/T 225–2002). Informed consent was obtained from human subjects. The authors declare that all human urine and human serum studies were approved by the ethics committee of Nanning Normal University and were performed in accordance with the ethical standards.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qi Xiao or Shan Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(PDF 263 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ning, G., Li, B., Liu, J. et al. Red-emission carbon dots as fluorescent “on–off–on” probe for highly sensitive and selective detection of Cu2+ and glutathione. Anal Bioanal Chem 414, 2219–2233 (2022). https://doi.org/10.1007/s00216-021-03859-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-021-03859-7

Keywords

Navigation