Skip to main content
Log in

Label-free magnetic nanoparticles-based electrochemical immunosensor for atrazine detection

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

This work presents the realization of a label-free electrochemical immunosensor for the quick, cheap, and straightforward determination of atrazine. This biodevice is based on developing a technological platform where a gold screen printed electrode (Au-SPE) surface was modified by the electrodeposition of a highly porous gold layer. As an internal probe redox, a Prussian Blue thin layer (PB) was then electrosynthetized onto the modified Au-SPE. Atrazine antibody (Ab-ATZ) was immobilized using G protein-functionalized magnetic nanoparticles (MNPs@protG) to ensure the correct orientation of the antibody to enhance the immunoaffinity. Under optimum experimental conditions, the electrochemical characterization of the developed immunosensor displays a linearity range towards atrazine within 0.05–1.5 ng/mL, a LOD of 0.011 ng/mL good reproducibility and stability. The immunosensor was tested in the analysis of spiked drinking water samples with a mean recovery ranging from 95.7 to 108.4%. The overall good analytical performances of this immunodevice suggest its application for the screening and monitoring of atrazine in real matrices.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Graymore M, Stagnitti F, Allinson G. Impacts of atrazine in aquatic ecosystems. Environ Int. 2001;26:483–95. https://doi.org/10.1016/S0160-4120(01)00031-9.

    Article  CAS  PubMed  Google Scholar 

  2. Ackerman F. The economics of atrazine. Int J Occup Environ Health. 2007;13:437–45. https://doi.org/10.1179/oeh.2007.13.4.437.

    Article  PubMed  Google Scholar 

  3. Friedmann AS. Atrazine inhibition of testosterone production in rat males following peripubertal exposure. Reprod Toxicol. 2002;16:275–9. https://doi.org/10.1016/S0890-6238(02)00019-9.

    Article  CAS  PubMed  Google Scholar 

  4. Samardzija D, Pogrmic-Majkic K, Fa S, Glisic B, Stanic B, Andric N. Atrazine blocks ovulation via suppression of Lhr and Cyp19a1 mRNA and estradiol secretion in immature gonadotropin-treated rats. Reprod Toxicol. 2016;61:10–8. https://doi.org/10.1016/j.reprotox.2016.02.009.

    Article  CAS  PubMed  Google Scholar 

  5. Abarikwu SO, Akiri OF, Durojaiye MA, Adenike A. Combined effects of repeated administration of Bretmont Wipeout (glyphosate) and Ultrazin (atrazine) on testosterone, oxidative stress and sperm quality of Wistar rats. Toxicol Mech Methods. 2015;25:70–80.

    Article  CAS  Google Scholar 

  6. Hayes TB, Khoury V, Narayan A, Nazir M, Park A, Brown T, Adame L, Chan E, Buchholz D, Stueve T. Atrazine induces complete feminization and chemical castration in male African clawed frogs (Xenopus laevis). Proc Natl Acad Sci. 2010;107:4612–7.

    Article  CAS  Google Scholar 

  7. Fraites MJP, Narotsky MG, Best DS, Stoker TE, Davis LK, Goldman JM, Hotchkiss MG, Klinefelter GR, Kamel A, Qian Y. Gestational atrazine exposure: effects on male reproductive development and metabolite distribution in the dam, fetus, and neonate. Reprod Toxicol. 2011;32:52–63.

    Article  CAS  Google Scholar 

  8. Sánchez OF, Lin L, Bryan CJ, Xie J, Freeman JL, Yuan C. Profiling epigenetic changes in human cell line induced by atrazine exposure. Environ Pollut. 2020;258:1–11. https://doi.org/10.1016/j.envpol.2019.113712.

    Article  CAS  Google Scholar 

  9. Sass JB, Colangelo A. European Union bans atrazine, while the United States negotiates continued use. Int J Occup Environ Health. 2006;12:260–7. https://doi.org/10.1179/oeh.2006.12.3.260.

    Article  CAS  PubMed  Google Scholar 

  10. IARC Monographs on the evaluation of carcinogenic risks to humans, WHO International Agency for Research on Cancer: Volume 73, IARCPress, 1999 Lyon, France

  11. EPA US. Atrazine chemical summary toxicity and exposure assessment for children’s health. 2014;336–338 . https://doi.org/10.1016/B978-0-12-386454-3.00098-1

  12. Lin C, Lerch RN, Garrett HE, George MF. Improved GC-MS/MS method for determination of atrazine and its chlorinated metabolites in forage plants—laboratory and field experiments. Commun Soil Sci Plant Anal. 2007;38:1753–73. https://doi.org/10.1080/00103620701435522.

    Article  CAS  Google Scholar 

  13. Della-Flora A, Becker RW, Ferrão MF, Toci AT, Cordeiro GA, Boroski M, Sirtori C. Fast, cheap and easy routine quantification method for atrazine and its transformation products in water matrixes using a DLLME-GC/MS method. Anal Methods. 2018;10:5447–52. https://doi.org/10.1039/C8AY02227E.

    Article  CAS  Google Scholar 

  14. Montiel-León JM, Vo Duy S, Munoz G, Bouchard MF, Amyot M, Sauvé S. Quality survey and spatiotemporal variations of atrazine and desethylatrazine in drinking water in Quebec, Canada. Sci Total Environ. 2019;671:578–85. https://doi.org/10.1016/j.scitotenv.2019.03.228.

    Article  CAS  PubMed  Google Scholar 

  15. Vanraes P, Willems G, Nikiforov A, Surmont P, Lynen F, Vandamme J, Van Durme J, Verheust YP, Van Hulle SWH, Dumoulin A, Leys C. Removal of atrazine in water by combination of activated carbon and dielectric barrier discharge. J Hazard Mater. 2015;299:647–55. https://doi.org/10.1016/j.jhazmat.2015.07.075.

    Article  CAS  PubMed  Google Scholar 

  16. Campuzano S, Yáñez-Sedeño P, Pingarrón JM. Electrochemical affinity biosensors based on selected nanostructures for food and environmental monitoring. Sensors (Switzerland). 2020;20:1–28. https://doi.org/10.3390/s20185125.

    Article  CAS  Google Scholar 

  17. Lu LL, Suscovich TJ, Fortune SM, Alter G. Beyond binding: antibody effector functions in infectious diseases. Nat Rev Immunol. 2018;18:46–61. https://doi.org/10.1038/nri.2017.106.

    Article  CAS  PubMed  Google Scholar 

  18. Zumpano R, Polli F, D’Agostino C, Antiochia R, Favero G, Mazzei F. Nanostructure-based electrochemical immunosensors as diagnostic tools. Electrochem. 2021;2:10–28. https://doi.org/10.3390/electrochem2010002.

    Article  Google Scholar 

  19. Zamfir LG, Geana I, Bourigua S, Rotariu L, Bala C, Errachid A, Jaffrezic-Renault N. Highly sensitive label-free immunosensor for ochratoxin A based on functionalized magnetic nanoparticles and EIS/SPR detection. Sensors Actuators, B Chem. 2011;159:178–84. https://doi.org/10.1016/j.snb.2011.06.069.

    Article  CAS  Google Scholar 

  20. Song S, Kim YJ, Kang HL, Yoon S, Hong DK, Kim WH, Shin IS, Seong WK, Lee KN. Sensitivity Improvement in electrochemical immunoassays using antibody immobilized magnetic nanoparticles with a clean ITO working electrode. Biochip J. 2020;14:308–16. https://doi.org/10.1007/s13206-020-4309-x.

    Article  CAS  Google Scholar 

  21. Matysiak-Brynda E, Bystrzejewski M, Wieckowska A, Grudzinski IP, Nowicka AM. Novel ultrasensitive immunosensor based on magnetic particles for direct detection of transferrin in blood. Sensors Actuators, B Chem. 2017;249:105–13. https://doi.org/10.1016/j.snb.2017.04.077.

    Article  CAS  Google Scholar 

  22. Shen M, Rusling JF, Dixit CK. Site-selective orientated immobilization of antibodies and conjugates for immunodiagnostics development. Methods. 2017;116:95–111. https://doi.org/10.1016/j.ymeth.2016.11.010.

    Article  CAS  PubMed  Google Scholar 

  23. Akerstrom B, Brodin T, Reis K, Bjorck L. Protein G: a powerful tool for binding and detection of monoclonal and polyclonal antibodies. J Immunol. 1985;135(4):2589–92.

    CAS  PubMed  Google Scholar 

  24. Gloag L, Mehdipour M, Chen D, Tilley RD, Gooding JJ. Advances in the application of magnetic nanoparticles for sensing. Adv Mater. 2019;31:1–26. https://doi.org/10.1002/adma.201904385.

    Article  CAS  Google Scholar 

  25. Li Y, Song YY, Yang C, Xia XH. Hydrogen bubble dynamic template synthesis of porous gold for nonenzymatic electrochemical detection of glucose. Electrochem commun. 2007;9:981–8. https://doi.org/10.1016/j.elecom.2006.11.035.

    Article  CAS  Google Scholar 

  26. Dawan S, Wannapob R, Kanatharana P, Limbut W, Numnuam A, Samanman S, Thavarungkul P. One-step porous gold fabricated electrode for electrochemical impedance spectroscopy immunosensor detection. Electrochim Acta. 2013;111:374–83. https://doi.org/10.1016/j.electacta.2013.08.012.

    Article  CAS  Google Scholar 

  27. Chen X, Wang Y, Zhou J, Yan W, Li X, Zhu JJ. Electrochemical impedance immunosensor based on three-dimensionally ordered macroporous gold film. Anal Chem. 2008;80:2133–40. https://doi.org/10.1021/ac7021376.

    Article  CAS  PubMed  Google Scholar 

  28. Chen X, Zhou J, Xuan J, Yan W, Jiang LP, Zhu JJ. Room-temperature ionic liquid assisted fabrication of sensitive electrochemical immunosensor based on ordered macroporous gold film. Analyst. 2010;135:2629–36. https://doi.org/10.1039/c0an00264j.

    Article  CAS  PubMed  Google Scholar 

  29. Wang H, Zhao X, Yang H, Cao L, Deng W, Tan Y, Xie Q. Three-dimensional macroporous gold electrodes superior to conventional gold disk electrodes in the construction of an electrochemical immunobiosensor for: Staphylococcus aureus detection. Analyst. 2020;145:2988–94. https://doi.org/10.1039/c9an02392e.

    Article  CAS  PubMed  Google Scholar 

  30. Bollella P, Hibino Y, Kano K, Gorton L, Antiochia R. Highly sensitive membraneless fructose biosensor based on fructose dehydrogenase immobilized onto aryl thiol modified highly porous gold electrode: characterization and application in food samples. Anal Chem. 2018;90:12131–6. https://doi.org/10.1021/acs.analchem.8b03093.

    Article  CAS  PubMed  Google Scholar 

  31. Ricci F, Palleschi G. Sensor and biosensor preparation, optimisation and applications of Prussian Blue modified electrodes. Biosens Bioelectron. 2005;21:389–407. https://doi.org/10.1016/j.bios.2004.12.001.

    Article  CAS  PubMed  Google Scholar 

  32. Zhu P, Zhao Y. Cyclic voltammetry measurements of electroactive surface area of porous nickel: peak current and peak charge methods and diffusion layer effect. Mater Chem Phys. 2019;233:60–7. https://doi.org/10.1016/j.matchemphys.2019.05.034.

    Article  CAS  Google Scholar 

  33. Trasatti S, Petrii OA. Real surface area measurements in electrochemistry. J Electroanal Chem. 1992;327:353–76. https://doi.org/10.1016/0926-860x(96)80148-7.

    Article  CAS  Google Scholar 

  34. Bernalte E, Marín-Sánchez C, Pinilla-Gil E, Brett CMA. Characterisation of screen-printed gold and gold nanoparticle-modified carbon sensors by electrochemical impedance spectroscopy. J Electroanal Chem. 2013;709:70–6. https://doi.org/10.1016/j.jelechem.2013.09.007.

    Article  CAS  Google Scholar 

  35. Butterworth A, Blues E, Williamson P, Cardona M, Gray L, Corrigan DK. SAM composition and electrode roughness affect performance of a DNA biosensor for antibiotic resistance. Biosensors. 2019;9.https://doi.org/10.3390/bios9010022

  36. Burke LD, Nugent PF. The electrochemistry of gold: I. The redox behaviour of the metal in aqueous media. Gold Bull. 1997;30:43–53. https://doi.org/10.1007/BF03214756.

    Article  CAS  Google Scholar 

  37. Yang J, Lin M, Cho MS, Lee Y. Determination of hydrogen peroxide using a Prussian Blue modified macroporous gold electrode. Microchim Acta. 2015;182:1089–94. https://doi.org/10.1007/s00604-014-1433-0.

    Article  CAS  Google Scholar 

  38. Mokrushina AV, Heim M, Karyakina EE, Kuhn A, Karyakin AA. Enhanced hydrogen peroxide sensing based on Prussian Blue modified macroporous microelectrodes. Electrochem commun. 2013;29:78–80. https://doi.org/10.1016/j.elecom.2013.01.004.

    Article  CAS  Google Scholar 

  39. Karyakin AA, Karyakina EE, Gorton L. On the mechanism of H2O2 reduction at Prussian Blue modified electrodes. Electrochem commun. 1999;1:78–82. https://doi.org/10.1016/S1388-2481(99)00010-7.

    Article  CAS  Google Scholar 

  40. Ellis D, Eckhoff M, Neff VD. Electrochromism in the mixed-valence hexacyanides. 1. Voltammetric and spectral studies of the oxidation and reduction of thin films of Prussian blue. J Phys Chem. 1981;85:1225–31.

    Article  CAS  Google Scholar 

  41. Itaya K, Ataka T, Toshima S. Spectroelectrochemistry and electrochemical preparation method of Prussian blue modified electrodes. J Am Chem Soc. 1982;104:4767–72. https://doi.org/10.1021/ja00382a006.

    Article  CAS  Google Scholar 

  42. De Mattos IL, Gorton L, Ruzgas T, Karyakin AA. Sensor for hydrogen peroxide based on Prussian blue modified electrode: improvement of the operational stability. Anal Sci. 2000;16:795–8. https://doi.org/10.2116/analsci.16.795.

    Article  Google Scholar 

  43. García-Jareño JJ, Sanmatías A, Vicente F, Gabrielli C, Keddam M, Perrot H. Study of Prussian blue (PB) films by ac-electrogravimetry: influence of PB morphology on ions movement. Electrochim Acta. 2000;45:3765–76. https://doi.org/10.1016/S0013-4686(00)00470-9.

    Article  Google Scholar 

  44. Kulesza PJ, Zamponi S, Berrettoni M, Marassi R, Malik MA. Preparation, spectroscopic characterization and electrochemical charging of the sodium-containing analogue of Prussian blue. Electrochim Acta. 1995;40:681–8. https://doi.org/10.1016/0013-4686(94)00348-5.

    Article  CAS  Google Scholar 

  45. Prabhu P, Babu RS, Narayanan SS. Synergetic effect of Prussian blue film with gold nanoparticle graphite-wax composite electrode for the enzyme-free ultrasensitive hydrogen peroxide sensor. J Solid State Electrochem. 2014;18:883–91. https://doi.org/10.1007/s10008-013-2288-8.

    Article  CAS  Google Scholar 

  46. Ricci F, Palleschi G, Yigzaw Y, Gorton L, Ruzgas T. Investigation of the effect of different glassy carbon materials on the performance of Prussian blue based sensors for hydrogen peroxide. Electroanalysis. 2003;15(3):175–82. https://doi.org/10.1002/elan.200390021.

    Article  CAS  Google Scholar 

  47. Liu X, Li WJ, Li L, Yang Y, Mao LG, Peng Z. A label-free electrochemical immunosensor based on gold nanoparticles for direct detection of atrazine. Sensors Actuators, B Chem. 2014;191:408–14. https://doi.org/10.1016/j.snb.2013.10.033.

    Article  CAS  Google Scholar 

  48. Yang M, Zhao X, Zheng S, Liu X, Jin B, Li H, Gan Y. A new electrochemical platform for ultrasensitive detection of atrazine based on modified self-ordered Nb2O5 nanotube arrays. J Electroanal Chem. 2017;791:17–22. https://doi.org/10.1016/j.jelechem.2017.03.009.

    Article  CAS  Google Scholar 

  49. Lavín Á, de Vicente J, Holgado M, Laguna MF, Casquel R, Santamaría B, et al. On the determination of uncertainty and limit of detection in label-free biosensors. Sensors (Switzerland). 2018;18.https://doi.org/10.3390/s18072038

  50. Bhardwaj J, Devarakonda S, Kumar S, Jang J. Development of a paper-based electrochemical immunosensor using an antibody-single walled carbon nanotubes bio-conjugate modified electrode for label-free detection of foodborne pathogens. Sensors Actuators, B Chem. 2017;253:115–23. https://doi.org/10.1016/j.snb.2017.06.108.

    Article  CAS  Google Scholar 

  51. Yılmaz E, Ozgur E, Bereli N, Turkmen D, Denizli A. Plastic antibody based surface plasmon resonance nanosensors for selective atrazine detection. Mater Sci Eng C. 2017;73:603–10. https://doi.org/10.1016/j.msec.2016.12.090.

    Article  CAS  Google Scholar 

  52. Liu X, Yang Y, Mao L, Li Z, Zhou C, Liu X, Zheng S, Hu Y. SPR quantitative analysis of direct detection of atrazine traces on Au-nanoparticles: nanoparticles size effect. Sensors Actuators B Chem. 2015;218:1–7. https://doi.org/10.1016/j.snb.2015.04.099.

    Article  CAS  Google Scholar 

  53. Marrakchi M, Helali S, Camino JS, González-Martínez MA, Abdelghani A, Hamdi M. Improvement of a pesticide immunosensor performance using site-directed antibody immobilisation and carbon nanotubes. Int J Nanotechnol. 2013;10:496–507. https://doi.org/10.1504/IJNT.2013.053519.

    Article  CAS  Google Scholar 

  54. Rahbar N, Parham H. Carbon paste electrode modified with cuo-nanoparticles as a probe for square wave voltammetric determination of atrazine. Jundishapur J Nat Pharm Prod. 2013;8:118–24.

    Article  Google Scholar 

  55. Belkhamssa N, Justino CIL, Santos PSM, Cardoso S, Lopes I, Duarte AC, Rocha-Santos T, Ksibi M. Label-free disposable immunosensor for detection of atrazine. Talanta. 2016;146:430–4. https://doi.org/10.1016/j.talanta.2015.09.015.

    Article  CAS  PubMed  Google Scholar 

  56. Shoorideh K, Chui CO. On the origin of enhanced sensitivity in nanoscale FET-based biosensors. Proc Natl Acad Sci U S A. 2014;111(14):5111–6. https://doi.org/10.1073/pnas.1315485111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franco Mazzei.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zumpano, R., Manghisi, M., Polli, F. et al. Label-free magnetic nanoparticles-based electrochemical immunosensor for atrazine detection. Anal Bioanal Chem 414, 2055–2064 (2022). https://doi.org/10.1007/s00216-021-03838-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-021-03838-y

Keywords

Navigation