Skip to main content
Log in

Unravelling the role of membrane pore size in polar organic chemical integrative samplers (POCIS) to broaden the polarity range of sampled analytes

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Polar organic chemical integrative samplers (POCIS) are widely used in their standard configuration for sampling contaminants in water bodies. A wider polyethersulfone (PES) membrane pore size was employed in POCIS exposed in a static calibration experiment to investigate the uptake of 21 emerging contaminants ranging from hydrophilic (perfluoroalkyl compounds, xanthines, an artificial sweetener) to more hydrophobic compounds (pharmaceuticals, oestrogens, UV filters). Compared to standard POCIS with 0.1-µm pore size PES membranes, the POCIS with 5-µm pore size PES membranes did not increase sampling rates for compounds of relatively low and mid-hydrophobicity. However, the uptake of more hydrophobic and anionic compounds, which either poorly diffuse through or are retained within the standard 0.1-µm PES membrane, showed a marked increase. This led to the first ever recorded sampling rates for triclosan (0.249 L day−1) and two UV filters (0.075–0.123 L day−1). Based on these results, more attention should be placed on the choice of the appropriate membrane for each POCIS application. The most suitable configuration depends on the studied compound physico-chemical characteristics—such as the polarity and the compound membrane-to-sorbent partitioning coefficient—but also on the site conditions (deployment time, fouling, flow variations, et.).

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. V Geissen H Mol E Klumpp G Umlauf M Nadal M Ploeg van der 2015 Emerging pollutants in the environment: a challenge for water resource management Int Soil Water Conserv Res 3 1 57 65

    Article  Google Scholar 

  2. Y Tang M Yin W Yang H Li Y Zhong L Mo 2019 Emerging pollutants in water environment: occurrence, monitoring, fate, and risk assessment Water Environ Res 91 10 984 991

    Article  CAS  Google Scholar 

  3. E Magi M Di Carro C Mirasole B Benedetti 2018 Combining passive sampling and tandem mass spectrometry for the determination of pharmaceuticals and other emerging pollutants in drinking water Microchem J 136 56 60 https://doi.org/10.1016/j.microc.2016.10.029

    Article  CAS  Google Scholar 

  4. DA Alvarez JD Petty JN Huckins TL Jones-Lepp DT Getting JP Goddard 2004 Development of a passive, in situ, integrative sampler for hydrophilic organic contaminants in aquatic environments Environ Toxicol Chem 23 7 1640 1648

    Article  CAS  Google Scholar 

  5. N Morin C Miège M Coquery J Randon 2012 Chemical calibration, performance, validation and applications of the polar organic chemical integrative sampler (POCIS) in aquatic environments TrAC - Trends Anal Chem 36 144 175

    Article  CAS  Google Scholar 

  6. C Harman IJ Allan ELM Vermeirssen 2012 Calibration and use of the polar organic chemical integrative sampler-a critical review Environ Toxicol Chem 31 12 2724 2738

    Article  CAS  Google Scholar 

  7. Alvarez DA, Huckins JN, Petty JD, Jones-Lepp T, Stuer-Lauridsen F, Getting DT, et al. Chapter 8 Tool for monitoring hydrophilic contaminants in water: polar organic chemical integrative sampler (POCIS). Compr Anal Chem. 2007;48(06):171–97.

  8. M Carro Di L Bono E Magi 2014 A simple recirculating flow system for the calibration of polar organic chemical integrative samplers (POCIS): effect of flow rate on different water pollutants Talanta [Internet]. 120 30 3 https://doi.org/10.1016/j.talanta.2013.11.088

    Article  CAS  Google Scholar 

  9. Mirasole C, Di Carro M, Tanwar S, Magi E. Liquid chromatography–tandem mass spectrometry and passive sampling: powerful tools for the determination of emerging pollutants in water for human consumption. J Mass Spectrom. 2016;(February):814–20.

  10. NAO Morin N Mazzella HPH Arp J Randon J Camilleri L Wiest 2018 Kinetic accumulation processes and models for 43 micropollutants in “pharmaceutical” POCIS Sci Total Environ [Internet] 615 197 207 https://doi.org/10.1016/j.scitotenv.2017.08.311

    Article  CAS  Google Scholar 

  11. Di Carro M, Magi E, Massa F, Castellano M, Mirasole C, Tanwar S, et al. Untargeted approach for the evaluation of anthropic impact on the sheltered marine area of Portofino (Italy). Mar Pollut Bull [Internet]. 2018;131(February):87–94. Available from: https://doi.org/10.1016/j.marpolbul.2018.03.059

  12. Y Li C Yang D Zha L Wang G Lu Q Sun 2018 In situ calibration of polar organic chemical integrative samplers to monitor organophosphate flame retardants in river water using polyethersulfone membranes with performance reference compounds Sci Total Environ [Internet] 610–611 1356 63 https://doi.org/10.1016/j.scitotenv.2017.08.234

    Article  CAS  Google Scholar 

  13. C Yang Y Li D Zha G Lu Q Sun D Wu 2017 A passive sampling method for assessing the occurrence and risk of organophosphate flame retardants in aquatic environments Chemosphere [Internet] 167 1 9 https://doi.org/10.1016/j.chemosphere.2016.09.141

    Article  CAS  Google Scholar 

  14. ELM Vermeirssen C Dietschweiler BI Escher J Voet Van Der J Hollender 2012 Transfer kinetics of polar organic compounds over polyethersulfone membranes in the passive samplers pocis and chemcatcher Environ Sci Technol 46 12 6759 6766

    Article  CAS  Google Scholar 

  15. A Belles P Pardon H Budzinski 2014 Development of an adapted version of polar organic chemical integrative samplers (POCIS-Nylon) Anal Bioanal Chem 406 4 1099 1110

    Article  CAS  Google Scholar 

  16. SA Morrison JB Belden 2016 Calibration of nylon organic chemical integrative samplers and sentinel samplers for quantitative measurement of pulsed aquatic exposures J Chromatogr A [Internet] 1449 109 17 https://doi.org/10.1016/j.chroma.2016.04.072

    Article  CAS  Google Scholar 

  17. Mijangos L, Ziarrusta H, Prieto A, Zugazua O, Zuloaga O, Olivares M, et al. Evaluation of polar organic chemical integrative and hollow fibre samplers for the determination of a wide variety of organic polar compounds in seawater. Talanta [Internet]. 2018;185(December 2017):469–76. Available from: https://doi.org/10.1016/j.talanta.2018.03.103

  18. Bayen S, Segovia E, Loh LL, Burger DF, Eikaas HS, Kelly BC. Application of polar organic chemical integrative sampler (POCIS) to monitor emerging contaminants in tropical waters. Sci Total Environ [Internet]. 2014;482–483(1):15–22. Available from: https://doi.org/10.1016/j.scitotenv.2014.02.082

  19. N Estoppey J Mathieu E Gascon Diez E Sapin O Delémont P Esseiva 2019 Monitoring of explosive residues in lake-bottom water using polar organic chemical integrative sampler (POCIS) and chemcatcher: determination of transfer kinetics through polyethersulfone (PES) membrane is crucial Environ Pollut 252 767 776

    Article  CAS  Google Scholar 

  20. Silvani L, Riccardi C, Eek E, Papini MP, Morin NAO, Cornelissen G, et al. Monitoring alkylphenols in water using the polar organic chemical integrative sampler (POCIS): determining sampling rates via the extraction of PES membranes and Oasis beads. Chemosphere [Internet]. 2017;184:1362–71. Available from: https://doi.org/10.1016/j.chemosphere.2017.06.083

  21. M Kah CD Brown 2008 Log D: Lipophilicity for ionisable compounds Chemosphere 72 10 1401 1408

    Article  CAS  Google Scholar 

  22. Gibson CM, Fowler PW. Aromaticity of caffeine, xanthine and the dimethyl xanthines. Tetrahedron Lett [Internet]. 2014;55(13):2078–81. Available from: https://doi.org/10.1016/j.tetlet.2014.02.027

  23. NC Dias CF Poole 2002 Mechanistic study of the sorption properties of Oasis® HLB and its use in solid-phase extraction Chromatographia 56 5–6 269 275

    Article  CAS  Google Scholar 

  24. PS Bäuerlein JE Mansell TL Laak Ter P Voogt De 2012 Sorption behavior of charged and neutral polar organic compounds on solid phase extraction materials: which functional group governs sorption? Environ Sci Technol 46 2 954 961

    Article  Google Scholar 

  25. Y Jeong A Schäffer K Smith 2017 Equilibrium partitioning of organic compounds to OASIS HLB® as a function of compound concentration, pH, temperature and salinity Chemosphere 174 297 305

    Article  CAS  Google Scholar 

  26. Li H, Helm PA, Paterson G, Metcalfe CD. The effects of dissolved organic matter and pH on sampling rates for polar organic chemical integrative samplers (POCIS). Chemosphere [Internet]. 2011;83(3):271–80. Available from: https://doi.org/10.1016/j.chemosphere.2010.12.071

  27. S Wang C Liu Q Li 2011 Fouling of microfiltration membranes by organic polymer coagulants and flocculants: controlling factors and mechanisms Water Res [Internet] 45 1 357 65 https://doi.org/10.1016/j.watres.2010.08.009

    Article  CAS  Google Scholar 

  28. NC Homem N de Camargo Lima Beluci S Amorim R Reis AMS Vieira MF Vieira 2019 Surface modification of a polyethersulfone microfiltration membrane with graphene oxide for reactive dyes removal Appl Surf Sci 486 499 507 https://doi.org/10.1016/j.apsusc.2019.04.276

    Article  CAS  Google Scholar 

  29. LD Nghiem AI Schäfer M Elimelech 2004 Removal of natural hormones by nanofiltration membranes: measurement, modeling and mechanisms Environ Sci Technol 38 6 1888 1896

    Article  CAS  Google Scholar 

  30. A Zenker H Schmutz K Fent 2008 Simultaneous trace determination of nine organic UV-absorbing compounds (UV filters) in environmental samples J Chromatogr A 1202 1 64 74

    Article  CAS  Google Scholar 

  31. K Fent A Zenker 1817 Rapp M 2010 Widespread occurrence of estrogenic UV-filters in aquatic ecosystems in Switzerland Environ Pollut [Internet] 158 5 24 https://doi.org/10.1016/j.envpol.2009.11.005

    Article  CAS  Google Scholar 

  32. R Amdany L Chimuka E Cukrowska 2014 Determination of naproxen, ibuprofen and triclosan in wastewater using the polar organic chemical integrative sampler (POCIS): A laboratory calibration and field application Water SA 40 3 407 414

    Article  Google Scholar 

  33. H Li PA Helm CD Metcalfe 2010 Sampling in the great lakes for pharmaceuticals, personal care products, and endocrine-disrupting substances using the passive polar organic chemical integrative sampler Environ Toxicol Chem 29 4 751 762

    Article  CAS  Google Scholar 

  34. SL MacLeod EL McClure CS Wong 2007 Laboratory calibration and field deployment of the polar organic chemical integrative sampler for pharmaceuticals and personal care products in wastewater and surface water Environ Toxicol Chem 26 12 2517 2529

    Article  CAS  Google Scholar 

  35. SL Kaserzon DW Hawker K Kennedy M Bartkow S Carter K Booij 2014 Characterisation and comparison of the uptake of ionizable and polar pesticides, pharmaceuticals and personal care products by POCIS and Chemcatchers Environ Sci Process Impacts 16 11 2517 2526

    Article  CAS  Google Scholar 

  36. SL Kaserzon DW Hawker K Kennedy M Bartkow S Carter K Booij 2014 Characterisation and comparison of the uptake of ionizable and polar pesticides, pharmaceuticals and personal care products by POCIS and Chemcatchers Environ Sci Process Impacts 16 11 2517 2526

    Article  CAS  Google Scholar 

  37. Park M, Wu S, Lopez IJ, Chang JY, Karanfil T, Snyder SA. Adsorption of perfluoroalkyl substances (PFAS) in groundwater by granular activated carbons: roles of hydrophobicity of PFAS and carbon characteristics. Water Res. 2020;170.

  38. E Bailly Y Levi S Karolak 2013 Calibration and field evaluation of polar organic chemical integrative sampler (POCIS) for monitoring pharmaceuticals in hospital wastewater Environ Pollut [Internet] 174 100 5 https://doi.org/10.1016/j.envpol.2012.10.025

    Article  CAS  Google Scholar 

  39. Y Jeong A Schäffer K Smith 2018 Comparison of the sampling rates and partitioning behaviour of polar and non-polar contaminants in the polar organic chemical integrative sampler and a monophasic mixed polymer sampler for application as an equilibrium passive sampler Sci Total Environ [Internet] 627 905 15 https://doi.org/10.1016/j.scitotenv.2018.01.273

    Article  CAS  Google Scholar 

  40. Togola A. Présence et devenir des substances pharmaceutiques dans les écosystèmes aquatiques. Université Bordeaux 1 Sciences et technologies; 2006.

  41. DR Orvos DJ Versteeg J Inauen M Capdevielle A Rothenstein V Cunningham 2002 Aquatic toxicity of triclosan Environ Toxicol Chem 21 7 1338 1349

    Article  CAS  Google Scholar 

  42. Cadena-Aizaga MI, Montesdeoca-Esponda S, Torres-Padrón ME, Sosa-Ferrera Z, Santana-Rodríguez JJ. Organic UV filters in marine environments: an update of analytical methodologies, occurrence and distribution. Trends Environ Anal Chem. 2020;25.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emanuele Magi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 132 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

MacKeown, H., Magi, E., Di Carro, M. et al. Unravelling the role of membrane pore size in polar organic chemical integrative samplers (POCIS) to broaden the polarity range of sampled analytes. Anal Bioanal Chem 414, 1963–1972 (2022). https://doi.org/10.1007/s00216-021-03832-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-021-03832-4

Keywords

Navigation