Skip to main content
Log in

An eco-friendly solvent-free reaction based on peptide probes: design an extraction-free method for analysis of acrylamide under microliter volume

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Acrylamide is a group 2A carcinogen and potential endocrine disruptor that can enter the ecosystem by various routes and has recently become a dangerous pollutant. This widely used chemical can enter the human body via air inhalation, food or water consumption, or skin contact. In this study, we developed a peptide probe for the detection of acrylamide by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) after its micro-tagging with a peptide. Direct detection of acrylamide by MALDI-TOF MS is not feasible due to its poor ionization in the MALDI interface, which hinders its analysis by the technique. After microwave irradiation for 2 min, the formed acrylamide-peptide derivative was detected easily by MALDI-TOF MS without the need for extraction procedures. The procedure does not involve organic solvents and a water-soluble peptide that allows detection of acrylamide in small sample volumes with a limit of detection (LOD) of 0.05 ng/μL. The relative standard deviation (RSD) and relative error (RE) of the measurements were < 6.7% for intra- and inter-day assays. Gel-washing solutions from a polyacrylamide gel experiment were used as a model to study the efficiency of the developed method. Finally, we used the proposed method for the detection of free acrylamide in small volumes of lung epithelial cells (a model to test the air inhalation of acrylamide under a tiny volume of sample) and human urine. The developed method will enable rapid acrylamide detection in environmental and biological samples via a green approach based on microwave-assisted derivatization in water alongside the use of a less toxic derivatization reagent, reusable target plate, and miniaturization protocols.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Code availability

Not applicable.

References

  1. Matoso V, Bargi-Souza P, Ivanski F, Romano MA, Romano RM. Acrylamide: a review about its toxic effects in the light of developmental origin of health and disease (DOHaD). Food Chem. 2019;283:422–30.

    Article  CAS  PubMed  Google Scholar 

  2. Virk-Baker MK, Nagy TR, Barnes S, Groopman J. Dietary acrylamide and human cancer: a systematic review of literature. Nutr Cancer. 2014;66:774–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kumar J, Da S, Teoh SL. Dietary acrylamide and the risks of developing cancer: facts to ponder. Front Nutr. 2018;5:14.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Erkekoglu P, Baydar T. Acrylamide neurotoxicity. Nutr Neurosci. 2014;17:49–57.

    Article  CAS  PubMed  Google Scholar 

  5. Belhadj Benziane A, Dilmi Bouras A, Mezaini A, Belhadri A, Benali M. Effect of oral exposure to acrylamide on biochemical and hematologic parameters in Wistar rats. Drug Chem Toxicol. 2019;42:157–66.

    Article  CAS  PubMed  Google Scholar 

  6. Parzefall W. Minireview on the toxicity of dietary acrylamide. Food Chem Toxicol. 2008;46:1360–4.

    Article  CAS  PubMed  Google Scholar 

  7. Xu Y, Cui B, Ran R, Liu Y, Chen H, Kai G, Shi J. Risk assessment, formation, and mitigation of dietary acrylamide: current status and future prospects. Food Chem Toxicol. 2014;69:1–12.

    Article  CAS  PubMed  Google Scholar 

  8. Rivadeneyra-Domínguez E, Becerra-Contreras Y, Vázquez-Luna A, Díaz-Sobac R, Rodríguez-Landa JF. Alterations of blood chemistry, hepatic and renal function, and blood cytometry in acrylamide-treated rats. Toxicol Rep. 2018;5:1124–8.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Moorman WJ, Reutman SS, Shaw PB, Blade LM, Marlow D, Vesper H, Clark JC, Schrader SM. Occupational exposure to acrylamide in closed system production plants: air levels and biomonitoring. J Toxicol Environ Health A. 2015;75:100–11.

    Article  Google Scholar 

  10. Mojska H, Gielecińska I, Cendrowski A. (2016) Acrylamide content in cigarette mainstream smoke and estimation of exposure to acrylamide from tobacco smoke in Poland. Ann Agric Environ Med. 2016;23:456–61.

    Article  CAS  PubMed  Google Scholar 

  11. McAdam K, Kimpton H, Vas C, Rushforth D, Porter A, Rodu B. The acrylamide content of smokeless tobacco products. Chem Cent J. 2015;9:56.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Lachenmeier DW, Przybylski MC, Rehm J. Comparative risk assessment of carcinogens in alcoholic beverages using the margin of exposure approach. Int J Cancer. 2012;131:E995–1003.

    Article  CAS  PubMed  Google Scholar 

  13. Galuch MB, Magon TFS, Silveira R, Nicácio AE, Pizzo JS, Bonafe EG, Maldaner L, Santos OO, Visentainer JV. Determination of acrylamide in brewed coffee by dispersive liquid-liquid microextraction (DLLME) and ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). Food Chem. 2019;282:120–6.

    Article  CAS  PubMed  Google Scholar 

  14. Friedman M, Levin CE. Review of methods for the reduction of dietary content and toxicity of acrylamide. J Agric Food Chem. 2008;56:6113–40.

    Article  CAS  PubMed  Google Scholar 

  15. Friedman M. Acrylamide: inhibition of formation in processed food and mitigation of toxicity in cells, animals, and humans. Food Funct. 2015;6:1752–72.

    Article  CAS  PubMed  Google Scholar 

  16. Baskar G, Aiswarya R. Overview on mitigation of acrylamide in starchy fried and baked foods. J Sci Food Agric. 2018;98:4385–94.

    Article  CAS  PubMed  Google Scholar 

  17. Kraeling MEK, Bronaugh L. In vitro percutaneous absorption of acrylamide and styrene from cosmetic vehicles through fuzzy rat and human skin. Cutan Ocular Toxicol. 2005;24:65–79.

    Article  CAS  Google Scholar 

  18. Williams FM, Rothe H, Barrett G, Chiodini A, Whyte J, Cronin MT, Monteiro-Riviere NA, Plautz J, Roper C, Westerhout J, Yang C, Guy RH. Assessing the safety of cosmetic chemicals: consideration of a flux decision tree to predict dermally delivered systemic dose for comparison with oral TTC (threshold of toxicological concern). Regul Toxicol Pharmacol. 2016;76:174–86.

    Article  CAS  PubMed  Google Scholar 

  19. Kusnin N, Syed MA, Ahmad SA. Toxicity, pollution and biodegradation of acrylamide – a mini review. J Biochem Microbiol Biotechnol. 2015;3:6–12.

    Article  Google Scholar 

  20. Zamani E, Shokrzadeh M, Fallah M, Shaki F. A review of acrylamide toxicity and its mechanism. Pharm Biomed Res. 2017;3:1–7.

    Article  CAS  Google Scholar 

  21. Tape Y, Çebi A. Acrylamide in environmental water: a review on sources, exposure, and public health risks. Expo Health. 2019;11:3–12.

    Article  Google Scholar 

  22. Böhme A, Laqua A, Schüürmann G. Chemoavailbility of organic electrophiles: impact of hydrophobicity and reactivity on their aquatic excess toxicity. Chem Res Toxicol. 2016;29:952–62.

    Article  PubMed  Google Scholar 

  23. LoPachin RM, Geohagen BC, Nordstroem LU. Mechanisms of soft and hard electrophile toxicities. Toxicology. 2019;418:62–9.

    Article  CAS  PubMed  Google Scholar 

  24. Kim KH, Park B, Rhee DK, Pyo S. Acrylamide induces senescence in macrophages through a process involving ATF3, ROS, p38/JNK, and a telomerase-independent pathway. Chem Res Toxicol. 2015;28:71–86.

    Article  CAS  PubMed  Google Scholar 

  25. Komoike Y, Matsuoka M. Endoplasmic reticulum stress-mediated neuronal apoptosis by acrylamide exposure. Toxicol Appl Pharmacol. 2016;310:68–77.

    Article  CAS  PubMed  Google Scholar 

  26. Pan X, Wu X, Yan D, Peng C, Rao C, Yan H. Acrylamide-induced oxidative stress and inflammatory response are alleviated by N-acetylcysteine in PC12 cells: involvement of the crosstalk between Nrf2 and NF-κB pathways regulated by MAPKs. Toxicol Lett. 2018;288:55–64.

    Article  CAS  PubMed  Google Scholar 

  27. Acaroz U, Ince S, Arslan-Acaroz D, Gurler Z, Kucukkurt I, Demirel HH, Arslan HO, Varol N, Zhu K. The ameliorative effects of boron against acrylamide-induced oxidative stress, inflammatory response, and metabolic changes in rats. Food Chem Toxicol. 2018;118:745–52.

    Article  CAS  PubMed  Google Scholar 

  28. Huang M, Zhuang P, Jiao J, Wang J, Zhang Y. Association of acrylamide hemoglobin biomarkers with obesity, abdominal obesity and overweight in general US population: NHANES 2003–2006. Sci Total Environ. 2018;631–632:589–96.

    Article  PubMed  Google Scholar 

  29. Huang M, Jiao J, Wang J, Chen X, Zhang Y. Associations of hemoglobin biomarker levels of acrylamide and all-cause and cardiovascular disease mortality among U.S. adults: national health and nutrition examination survey 2003–2006. Environ Pollut. 2018;238:852–8.

    Article  CAS  PubMed  Google Scholar 

  30. Guo J, Yu D, Lv N, Bai R, Xu C, Chen G, Cao W. Relationships between acrylamide and glycidamide hemoglobin adduct levels and allergy-related outcomes in general US population, NHANES 2005–2006. Environ Pollut. 2017;225:506–13.

    Article  CAS  PubMed  Google Scholar 

  31. Aalto-Korte K, Jolanki R, Suuronen K, Estlander T. Formaldehyde-negative allergic contact dermatitis from melamine-formaldehyde resin. Contact Dermatitis. 2002;47:361–2.

    Article  CAS  PubMed  Google Scholar 

  32. Lin CY, Lin LY, Chen YC, Wen LL, Chien KL, Sung FC, Chen PC, Su TC. Association between measurements of thyroid function and the acrylamide metabolite N-acetyl-S-(propionamide)-cysteine in adolescents and young adults. Environ Res. 2015;136:246–52.

    Article  CAS  PubMed  Google Scholar 

  33. Elbashir AA, Omar MM, Ibrahim WA, Schmitz OJ, Aboul-Enein HY. Acrylamide analysis in food by liquid chromatographic and gas chromatographic methods. Crit Rev Anal Chem. 2014;44:107–41.

    Article  CAS  PubMed  Google Scholar 

  34. Keramat J, LeBail A, Prost C, Soltanizadeh N. Acrylamide in foods: chemistry and analysis. A review. Food Bioprocess Technol. 2011;4:340–63.

    Article  CAS  Google Scholar 

  35. Liu J, Man Y, Zhu Y, Hu X, Chen F. Simultaneous analysis of acrylamide and its key precursors, intermediates, and products in model systems by liquid chromatography–triple quadrupole mass spectrometry. Anal Chem. 2013;85:9262–71.

    Article  CAS  PubMed  Google Scholar 

  36. Hu Q, Xu X, Fu Y, Li Y. Rapid methods for detecting acrylamide in thermally processed foods: a review. Food Control. 2015;56:135–46.

    Article  CAS  Google Scholar 

  37. Cheng J, Zhang S, Wang S, Wang P, Su XO, Xie J. Rapid and sensitive detection of acrylamide in fried food using dispersive solid-phase extraction combined with surface-enhanced Raman spectroscopy. Food Chem. 2019;276:157–63.

    Article  CAS  PubMed  Google Scholar 

  38. Moldoveanu SC, Gerardi AR. Acrylamide analysis in tobacco, alternative tobacco products, and cigarette smoke. J Chromatogr Sci. 2011;49:234–42.

    Article  CAS  Google Scholar 

  39. Boyle EB, Viet SM, Wright DJ, Merrill LS, Alwis KU, Blount BC, Mortensen ME, Moye J Jr, Dellarco M. Assessment of exposure to VOCs among pregnant women in the national children’s study. Int J Environ Res Public Health. 2016;13:376.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Kacar S, Sahinturk V, Kutlu HM. Effect of acrylamide on BEAS-2B normal human lung cells: cytotoxic, oxidative, apoptotic and morphometric analysis. Acta Histochem. 2019;121:595–603.

    Article  CAS  PubMed  Google Scholar 

  41. Keng CL, Lin YC, Tseng WL, Lu CY. Design of peptide-based probes for the microscale detection of reactive oxygen species. Anal Chem. 2017;89:10883–8.

    Article  CAS  PubMed  Google Scholar 

  42. Fennell TR, Sumner SC, Snyder RW, Burgess J, Friedman MA. Kinetics of elimination of urinary metabolites of acrylamide in humans. Toxicol Sci. 2006;93:256–67.

    Article  CAS  PubMed  Google Scholar 

  43. Harahap Y, Elysia C, Starlin Z, Jayusman AM. Analysis of acrylamide in dried blood spots of lung cancer patients by ultrahigh-performance liquid chromatography tandem mass spectrometry. Int J Anal Chem. 2020;2020:2015264. https://doi.org/10.1155/2020/2015264.

  44. Calvano CD, Monopoli A, Cataldi TRI, Palmisano F. MALDI matrices for low molecular weight compounds: an endless story? Anal Bioanal Chem. 2018;410:4015–38.

    Article  CAS  PubMed  Google Scholar 

  45. Ge MC, Kuo AJ, Liu KL, Wen YH, Chia JH, Chang PY, Lee MH, Wu TL, Chang SC, Lu JJ. Routine identification of microorganisms by matrix-assisted laser desorption ionization time-of-flight mass spectrometry: success rate, economic analysis, and clinical outcome. J Microbiol Immunol Infect. 2017;50:662–8.

    Article  CAS  PubMed  Google Scholar 

  46. Reyes-Garcés N, Gionfriddo E, Gómez-Ríos GA, Alam MN, Boyacı E, Bojko B, Singh V, Grandy J, Pawliszyn J. Advances in solid phase microextraction and perspective on future directions. Anal Chem. 2018;90:302–60.

    Article  PubMed  Google Scholar 

  47. D’Atri V, Fekete S, Clarke A, Veuthey JL, Guillarme D. Recent advances in chromatography for pharmaceutical analysis. Anal Chem. 2019;91:210–39.

    Article  CAS  PubMed  Google Scholar 

  48. Lavilla I, Romero V, Costas I, Bendicho C. Greener derivatization in analytical chemistry. Trends Anal Chem. 2014;61:1–10.

    Article  CAS  Google Scholar 

  49. Mohamed HM. Green, environment-friendly, analytical tools give insights in pharmaceuticals and cosmetics analysis. Trends Anal Chem. 2015;66:176–92.

    Article  CAS  Google Scholar 

  50. Mudhoo A, Gautam RK, Ncibi MC, Zhao F, Garg VK, Sillanpää M. Green synthesis, activation and functionalization of adsorbents for dye sequestration. Environ Chem Lett. 2019;17:157–93.

    Article  CAS  Google Scholar 

  51. Iravani S, Varma RS. Green synthesis, biomedical and biotechnological applications of carbon and graphene quantum dots. A review. Environ Chem Lett. 2020;8:703–27.

    Article  Google Scholar 

Download references

Acknowledgements

Instrumentation support from the Center for Resources, Research and Development, Kaohsiung Medical University, is appreciated.

Funding

This study was financially supported by grants from the Ministry of Science and Technology (MOST 109–2113-M-037–002 and MOST 110–2113-M-037–001) and the NSYSU-KMU Joint Research Project (110-P003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi-Yu Lu.

Ethics declarations

The experiments were approved by the Institutional Review Board of Kaohsiung Medical University Chung-Ho Memorial Hospital. The method was performed in accordance with the approved guidelines, and written informed consent was obtained from all participants.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 224 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, YS., Suen, JL., Tseng, WL. et al. An eco-friendly solvent-free reaction based on peptide probes: design an extraction-free method for analysis of acrylamide under microliter volume. Anal Bioanal Chem 413, 7531–7539 (2021). https://doi.org/10.1007/s00216-021-03717-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-021-03717-6

Keywords

Navigation