Skip to main content
Log in

Lysine reactivity profiling reveals molecular insights into human serum albumin–small-molecule drug interactions

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Human serum albumin (HSA) is one of the most important serum carrier proteins that deliver small-molecule drugs to their specific targets. Clarifying the molecular mechanism of the interaction between natural HSA and drugs in an aqueous solution has been a hot topic in pharmaceutical chemistry, clinical medicine, and biochemistry in recent years, but it is still challenging. In this paper, the details of molecular interactions of HSA with a variety of therapeutic drugs including ibuprofen, indomethacin, phenylbutazone, and warfarin are systematically investigated using a mass spectrometry (MS)-based lysine reactivity profiling (LRP) strategy. The results reaffirm that the major ligand binding sites (including Sites I and II) of HSA are located in subdomains IIA and IIIA, while several potential drug-binding areas at subdomain IIIB and α helix IIB-IIIA are newly characterized. The MS-LRP strategy may have important application prospects in pharmacodynamics, pharmacokinetics, and safety evaluation of small-molecule drugs.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kratz F. Albumin as a drug carrier: design of prodrugs, drug conjugates and nanoparticles. J Control Release. 2008;132(3):171–83. https://doi.org/10.1016/j.jconrel.2008.05.010.

    Article  CAS  PubMed  Google Scholar 

  2. Ryan AJ, Ghuman J, Zunszain PA, Chung CW, Curry S. Structural basis of binding of fluorescent, site-specific dansylated amino acids to human serum albumin. J Struct Biol. 2011;174(1):84–91. https://doi.org/10.1016/j.jsb.2010.10.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Spada A, Emami J, Tuszynski JA, Lavasanifar A. The uniqueness of albumin as a carrier in Nanodrug delivery. Mol Pharm. 2021;18(5):1862–94. https://doi.org/10.1021/acs.molpharmaceut.1c00046.

    Article  CAS  PubMed  Google Scholar 

  4. Babgi BA, Alsayari J, Alenezi HM, Abdellatif MH, Eltayeb NE, Emwas AHM, et al. Alteration of anticancer and protein-binding properties of gold(I) Alkynyl by phenolic Schiff bases moieties. Pharmaceutics. 2021;13(4):13. https://doi.org/10.3390/pharmaceutics13040461.

    Article  CAS  Google Scholar 

  5. Tretiakova D, Le-Deigen I, Onishchenko N, Kuntsche J, Kudryashova E, Vodovozova E. Phosphatidylinositol stabilizes fluid-phase liposomes loaded with a Melphalan lipophilic prodrug. Pharmaceutics. 2021;13(4):19. https://doi.org/10.3390/pharmaceutics13040473.

    Article  CAS  Google Scholar 

  6. Christopoulos A, Kenakin T. G protein-coupled receptor allosterism and complexing. Pharmacol Rev. 2002;54(2):323–74. https://doi.org/10.1124/pr.54.2.323.

    Article  CAS  PubMed  Google Scholar 

  7. Wong F. Drug insight: the role of albumin in the management of chronic liver disease. Nat Clin Pract Gastroenterol Hepatol. 2007;4(1):43–51. https://doi.org/10.1038/ncpgasthep0680.

    Article  CAS  PubMed  Google Scholar 

  8. Wang MY, Zhang L, Cai YF, Yang Y, Qu LP, Shen YT, et al. Bioengineered human serum albumin fusion protein as target/enzyme/pH three-stage propulsive drug vehicle for tumor therapy. ACS Nano. 2020;14(12):17405–18. https://doi.org/10.1021/acsnano.0c07610.

    Article  CAS  Google Scholar 

  9. Bertozo LD, Maszota-Zieleniak M, Bolean M, Ciancaglini P, Samsonov SA, Ximenes VF. Binding of fluorescent dansyl amino acids in albumin: when access to the protein cavity is more important than the strength of binding. Dyes Pigments. 2021;188:13. https://doi.org/10.1016/j.dyepig.2021.109195.

    Article  CAS  Google Scholar 

  10. Yang HQ, Liu JY, Huang YM, Gao R, Tang B, Li SS, et al. Domain-specific interactions between MLN8237 and human serum albumin estimated by STD and WaterLOGSY NMR, ITC, spectroscopic, and docking techniques. Sci Rep. 2017;7:11. https://doi.org/10.1038/srep45514.

    Article  CAS  Google Scholar 

  11. Ascenzi P, di Masi A, Fanali G, Fasano M. Heme-based catalytic properties of human serum albumin. Cell Death Discov. 2015;1:7. https://doi.org/10.1038/cddiscovery.2015.25.

    Article  CAS  Google Scholar 

  12. Wu F, Song XM, Qiu YL, Zheng HQ, Hu FL, Li HL. Unique dynamic mode between Artepillin C and human serum albumin implies the characteristics of Brazilian green propolis representative bioactive component. Sci Rep. 2020;10(1):10. https://doi.org/10.1038/s41598-020-74197-4.

    Article  CAS  Google Scholar 

  13. Diaz N, Suarez D, Sordo TL, Merz KM. Molecular dynamics study of the IIA binding site in human serum albumin: influence of the protonation state of Lys195 and Lys199. J Med Chem. 2001;44(2):250–60. https://doi.org/10.1021/jm000340v.

    Article  CAS  PubMed  Google Scholar 

  14. Asano S, Patterson JT, Gaj T, Barbas CF. Site-selective labeling of a lysine residue in human serum albumin. Angew Chem-Int Edit. 2014;53(44):11783–6. https://doi.org/10.1002/anie.201405924.

    Article  CAS  Google Scholar 

  15. Sudlow G, Birkett DJ, Wade DN. Characterization of 2 specific drug binding-sites on human-serum albumin. Mol Pharmacol. 1975;11(6):824–32.

    CAS  PubMed  Google Scholar 

  16. Quinlan GJ, Martin GS, Evans TW. Albumin: biochemical properties and therapeutic potential. Hepatology. 2005;41(6):1211–9. https://doi.org/10.1002/hep.20720.

    Article  CAS  PubMed  Google Scholar 

  17. Meneghini C, Leboffe L, Bionducci M, Fanali G, Meli M, Colombo G, et al. The five-to-six-coordination transition of ferric human serum Heme-albumin is allosterically-modulated by ibuprofen and warfarin: a combined XAS and MD study. PLoS One. 2014;9(8):11. https://doi.org/10.1371/journal.pone.0104231.

    Article  CAS  Google Scholar 

  18. Bhattacharya AA, Grune T, Curry S. Crystallographic analysis reveals common modes of binding of medium and long-chain fatty acids to human serum albumin. J Mol Biol. 2000;303(5):721–32. https://doi.org/10.1006/jmbi.2000.4158.

    Article  CAS  PubMed  Google Scholar 

  19. Wardell M, Wang ZM, Ho JX, Robert J, Ruker F, Ruble J, et al. The atomic structure of human methemalbumin at 1.9 angstrom. Biochem Biophys Res Commun. 2002;291(4):813–9. https://doi.org/10.1006/bbrc.2002.6540.

    Article  CAS  PubMed  Google Scholar 

  20. Ascenzi P, Tundo GR, Fanali G, Coletta M, Fasano M. Warfarin modulates the nitrite reductase activity of ferrous human serum heme-albumin. J Biol Inorg Chem. 2013;18(8):939–46. https://doi.org/10.1007/s00775-013-1040-2.

    Article  CAS  PubMed  Google Scholar 

  21. Wanwimolruk S, Birkett DJ, Brooks PM. Structural requirements for drug-binding to site-ii on human-serum albumin. Mol Pharmacol. 1983;24(3):458–63.

    CAS  PubMed  Google Scholar 

  22. Curry S. Lessons from the crystallographic analysis of small molecule binding to human serum albumin. Drug Metab Pharmacokinet. 2009;24(4):342–57. https://doi.org/10.2133/dmpk.24.342.

    Article  CAS  PubMed  Google Scholar 

  23. Ahmad E, Rabbani G, Zaidi N, Singh S, Rehan M, Khan MM, et al. Stereo-selectivity of human serum albumin to enantiomeric and isoelectronic pollutants dissected by spectroscopy, Calorimetry and Bioinformatics. PLoS One. 2011;6(11):18. https://doi.org/10.1371/journal.pone.0026186.

    Article  CAS  Google Scholar 

  24. Otagiri M. A molecular functional study on the interactions of drugs with plasma proteins. Drug Metab Pharmacokinet. 2005;20(5):309–23. https://doi.org/10.2133/dmpk.20.309.

    Article  CAS  PubMed  Google Scholar 

  25. Hassan M, Azzazy E, Christenson RH. All About Albumin: Biochemistry, Genetics, and Medical Applications. Theodore Peters, Jr. San Diego: Academic Press, 1996, 432 pp, $85.00. ISBN 0–12–552110-3. Clinical Chemistry. 1997;43(10):2014a-5. https://doi.org/10.1093/clinchem/43.10.2014a

  26. Sugio S, Kashima A, Mochizuki S, Noda M, Kobayashi K. Crystal structure of human serum albumin at 2.5 angstrom resolution. Protein Eng. 1999;12(6):439–46. https://doi.org/10.1093/protein/12.6.439.

    Article  CAS  PubMed  Google Scholar 

  27. Sen P, Fatima S, Ahmad B, Khan RH. Interactions of thioflavin T with serum albumins: spectroscopic analyses. Spectroc Acta Pt A-Molec Biomolec Spectr. 2009;74(1):94–9. https://doi.org/10.1016/j.saa.2009.05.010.

    Article  CAS  Google Scholar 

  28. Diethelm-Varela B, Using NMR. Spectroscopy in the fragment-based drug discovery of small-molecule anticancer targeted therapies. ChemMedChem. 2021;16(5):725–42. https://doi.org/10.1002/cmdc.202000756.

    Article  CAS  PubMed  Google Scholar 

  29. Manea YK, Khan AMT, Qashqoosh MTA, Wani AA, Shahadat M. Ciprofloxacin-supportedchitosan/polyphosphate nanocomposite to bind bovine serum albumin: its application in drug delivery. J Mol Liq. 2019;292:15. https://doi.org/10.1016/j.molliq.2019.111337.

  30. Merlino A, Marzo T, Messori L. Protein metalation by anticancer Metallodrugs: a joint ESI MS and XRD investigative strategy. Chem-Eur J. 2017;23(29):6942–7. https://doi.org/10.1002/chem.201605801.

    Article  CAS  PubMed  Google Scholar 

  31. Williamson MP. Using chemical shift perturbation to characterise ligand binding. Prog Nucl Magn Reson Spectrosc. 2013;73:1–16. https://doi.org/10.1016/j.pnmrs.2013.02.001.

    Article  CAS  PubMed  Google Scholar 

  32. Zhou Y, Wu Y, Yao MD, Liu ZY, Chen J, Chen J, et al. Probing the lysine proximal microenvironments within membrane protein complexes by active dimethyl labeling and mass spectrometry. Anal Chem. 2016;88(24):12060–5. https://doi.org/10.1021/acs.analchem.6b02502.

    Article  CAS  PubMed  Google Scholar 

  33. Zhou Y, Liu ZY, Zhang JB, Dou TY, Chen J, Ge GB, et al. Prediction of ligand modulation patterns on membrane receptors via lysine reactivity profiling. Chem Commun. 2019;55(30):4311–4. https://doi.org/10.1039/c9cc00520j.

    Article  CAS  Google Scholar 

  34. Liu ZY, Zhou Y, Liu J, Chen J, Heck AJR, Wang FJ. Reductive methylation labeling, from quantitative to structural proteomics. Trac-Trends Anal Chem. 2019;118:771–8. https://doi.org/10.1016/j.trac.2019.07.009.

    Article  CAS  Google Scholar 

  35. Chen J, Wang AH, Liu B, Zhou Y, Luo P, Zhang ZC, et al. Quantitative lysine reactivity profiling reveals conformational inhibition dynamics and potency of Aurora a kinase inhibitors. Anal Chem. 2019;91(20):13222–9. https://doi.org/10.1021/acs.analchem.9b03647.

    Article  CAS  PubMed  Google Scholar 

  36. Liu ZY, Zhang WX, Sun BW, Ma YL, He M, Pan YJ, et al. Probing conformational hotspots for the recognition and intervention of protein complexes by lysine reactivity profiling. Chem Sci. 2021;12(4):1451–7. https://doi.org/10.1039/d0sc05330a.

    Article  CAS  Google Scholar 

  37. Ghuman J, Zunszain PA, Petitpas I, Bhattacharya AA, Otagiri M, Curry S. Structural basis of the drug-binding specificity of human serum albumin. J Mol Biol. 2005;353(1):38–52. https://doi.org/10.1016/j.jmb.2005.07.075.

    Article  CAS  PubMed  Google Scholar 

  38. Evoli S, Mobley DL, Guzzi R, Rizzuti B. Multiple binding modes of ibuprofen in human serum albumin identified by absolute binding free energy calculations. Phys Chem Chem Phys. 2016;18(47):32358–68. https://doi.org/10.1039/c6cp05680f.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ranjbar S, Shokoohinia Y, Ghobadi S, Bijari N, Gholamzadeh S, Moradi N, et al. Studies of the interaction between Isoimperatorin and human serum albumin by multispectroscopic method: identification of possible binding site of the compound Using esterase activity of the protein. Sci World J. 2013;13. https://doi.org/10.1155/2013/305081.

  40. Nerusu A, Chinthapalli DK, Subramanyam R. Role of Herborn (K240E) and Milano slow (D375H) human serum albumin variants towards binding of phenylbutazone and ibuprofen. Int J Biol Macromol. 2019;134:645–52. https://doi.org/10.1016/j.ijbiomac.2019.05.075.

    Article  CAS  PubMed  Google Scholar 

  41. Wang ZM, Ho JX, Ruble JR, Rose J, Ruker F, Ellenburg M, et al. Structural studies of several clinically important oncology drugs in complex with human serum albumin. Biochim Biophys Acta-Gen Subj. 2013;1830(12):5356–74. https://doi.org/10.1016/j.bbagen.2013.06.032.

    Article  CAS  Google Scholar 

  42. Zhao B, Sensintaffar J, Bian ZG, Belmar J, Lee T, Olejniczak ET, et al. Structure of a myeloid cell leukemia-1(Mcl-1) inhibitor bound to drug site 3 of human serum albumin. Bioorg Med Chem. 2017;25(12):3087–92. https://doi.org/10.1016/j.bmc.2017.03.060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wenskowsky L, Schreuder H, Derdau V, Matter H, Volkmar J, Nazare M, et al. Identification and characterization of a single high-affinity fatty acid binding site in human serum albumin. Angew Chem-Int Edit. 2018;57(4):1044–8. https://doi.org/10.1002/anie.201710437.

    Article  CAS  Google Scholar 

  44. Zhou Y, Liu Z, Yao M, Chen J, Xiao Y, Han G, et al. Elucidating the molecular mechanism of dynamic photodamage of photosystem II membrane protein complex by integrated proteomics strategy. CCS Chem. 2021:443–54. https://doi.org/10.31635/ccschem.021.202000583

  45. McKee AC, Carreras I, Hossain L, Ryu H, Klein WL, Oddo S, et al. Ibuprofen reduces a beta, hyperphosphorylated tau and memory deficits in Alzheimer mice. Brain Res. 2008;1207:225–36. https://doi.org/10.1016/j.brainres.2008.01.095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. De Palma C, Di Paola R, Perrotta C, Mazzon E, Cattaneo D, Trabucchi E, et al. Ibuprofen-arginine generates nitric oxide and has enhanced anti-inflammatory effects. Pharmacol Res. 2009;60(4):221–8. https://doi.org/10.1016/j.phrs.2009.06.002.

    Article  CAS  PubMed  Google Scholar 

  47. Nanau RM, Neuman MG. Ibuprofen-induced hypersensitivity syndrome. Transl Res. 2010;155(6):275–93. https://doi.org/10.1016/j.trsl.2010.01.005.

    Article  CAS  PubMed  Google Scholar 

  48. Yamasaki K, Chuang VTG, Maruyama T, Otagiri M. Albumin-drug interaction and its clinical implication. Biochim Biophys Acta-Gen Subj. 2013;1830(12):5435–43. https://doi.org/10.1016/j.bbagen.2013.05.005.

    Article  CAS  Google Scholar 

  49. Zsila F, Subdomain IB. Is the third major drug binding region of human serum albumin: toward the three-sites model. Mol Pharm. 2013;10(5):1668–82. https://doi.org/10.1021/mp400027q.

    Article  CAS  PubMed  Google Scholar 

  50. Simard JR, Zunszain PA, Hamilton JA, Curry S. Location of high and low affinity fatty acid binding sites on human serum albumin revealed by NMR drug-competition analysis. J Mol Biol. 2006;361(2):336–51. https://doi.org/10.1016/j.jmb.2006.06.028.

    Article  CAS  PubMed  Google Scholar 

  51. de Groot DJA, van der Deen M, Le TKP, Regeling A, de Jong S, de Vries EGE. Indomethacin induces apoptosis via a MRPI-dependent mechanism in doxorubicin-resistant small-cell lung cancer cells overexpressing MRPI. Br J Cancer. 2007;97(8):1077–83. https://doi.org/10.1038/sj.bjc.6604010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Tse AKW, Cao HH, Cheng CY, Kwan HY, Yu H, Fong WF, et al. Indomethacin sensitizes TRAIL-resistant melanoma cells to TRAIL-induced apoptosis through ROS-mediated upregulation of death receptor 5 and downregulation of Survivin. J Invest Dermatol. 2014;134(5):1397–407. https://doi.org/10.1038/jid.2013.471.

    Article  CAS  PubMed  Google Scholar 

  53. Hao L, Kearns J, Scott S, Wu DY, Kodani SD, Morisseau C, et al. Indomethacin enhances Brown fat activity. J Pharmacol Exp Ther. 2018;365(3):467–75. https://doi.org/10.1124/jpet.117.246256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bogdan M, Pirnau A, Floare C, Bugeac C. Binding interaction of indomethacin with human serum albumin. J Pharm Biomed Anal. 2008;47(4–5):981–4. https://doi.org/10.1016/j.jpba.2008.04.003.

    Article  CAS  PubMed  Google Scholar 

  55. Zhang J, Sun HH, Zhang YZ, Yang LY, Dai J, Liu Y. Interaction of human serum albumin with indomethacin: spectroscopic and molecular modeling studies. J Solut Chem. 2012;41(3):422–35. https://doi.org/10.1007/s10953-012-9809-4.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support is gratefully acknowledged for the National Natural Science Foundation of China (91853101, 81922070, and 81973286), the Natural Science Foundation of Liaoning Province (2019-YQ-07), the Dalian Science and Technology Innovation Foundation (2019J11CY019), Shanghai Talent Development Fund (2019093), the grant from DICP (DICP I202007), and the National Key R&D Program of China (2019YFE0119300 and 2018YFC1706600).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: [Shirui Yang], [Fangjun Wang]; Methodology: [Shirui Yang], [Zheyi Liu], [Wenxiang Zhang]; Validation: [Shirui Yang], [Wenxiang Zhang]; Formal analysis and investigation: [Shirui Yang], [Wenxiang Zhang], [Ziyang Zhai]; Data curation: [Shirui Yang]; Visualization: [Shirui Yang], [Wenxiang Zhang]; Writing - original draft preparation: [Shirui Yang]; Resources: [Fangjun Wang], [Xudong Hou], [Ping Wang], [Guangbo Ge]; Writing - review and editing: [Wenxiang Zhang], [Guangbo Ge], [Fangjun Wang]; Project administration: [Fangjun Wang], [Guangbo Ge]; Supervision: [Fangjun Wang], [Guangbo Ge].

Corresponding authors

Correspondence to Guangbo Ge or Fangjun Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Consent to participate

The authors voluntarily agree to participate in this research study.

Consent for publication

The authors voluntarily agree to publish the results of the study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 25.9 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, S., Zhang, W., Liu, Z. et al. Lysine reactivity profiling reveals molecular insights into human serum albumin–small-molecule drug interactions. Anal Bioanal Chem 413, 7431–7440 (2021). https://doi.org/10.1007/s00216-021-03700-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-021-03700-1

Keywords

Navigation