Skip to main content

Advertisement

Log in

A double-spike MC TIMS measurement procedure for low-amount Ca isotopic analysis of limited biological tissue samples

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The application of Ca isotopic analysis in biomedical studies has great potential to identify changes in Ca metabolism and bone metabolism. Reliable measurement of Ca isotope-amount ratios is challenging considering limited Ca amounts and significant procedural blank levels. In this study, Ca purification was performed using the DGA Resin, optimized for low procedural blanks and separation of Ca from matrix elements and isobaric interferences (Na, Mg, K, Ti, Fe, Ba), while maintaining quasi-quantitative recoveries which are sufficient since a 42Ca–48Ca double-spike (DS) was applied. Ca isotopic analysis was performed using multicollector thermal ionization mass spectrometry (MC TIMS). The obtained procedural Ca blank of ≤10 ng enables processing of limited Ca amounts down to 670 ng. Data reduction of the measured Ca isotope-amount ratios was performed using an in-house developed software solving the DS algorithm. Data quality was improved by extension of equilibration time of the sample-DS mixture and implementation of a normalization strategy for raw isotopic data. The reported δ(44Ca/40Ca)NIST SRM 915a of NIST SRM 915a processed as a sample was found to be 0.01 ‰ ± 0.08 ‰ (2 SD, n = 15). Ca isotope-amount ratios of the reference material NIST SRM 1400 (bone ash), NIST SRM 1486 (bone meal), GBW07601 (human hair), and IAPSO (seawater) were in good agreement within uncertainty with literature data. Novel data on additional reference materials for biological tissues (hair) is presented, which might indicate a potential fractionation of Ca incorporated into hair tissue when compared to the blood pool.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Morgan JLL, Skulan JL, Gordon GW, Romaniello SJ, Smith SM, Anbar AD. Rapidly assessing changes in bone mineral balance using natural stable calcium isotopes. Proc Natl Acad Sci. 2012;109(25):9989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Eisenhauer A, Müller M, Heuser A, Kolevica A, Glüer CC, Both M, Laue C, Hehn U, Kloth S, Shroff R, Schrezenmeir J. Calcium isotope ratios in blood and urine: a new biomarker for the diagnosis of osteoporosis. Bone Rep. 2019;10:100200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Heuser A, Frings-Meuthen P, Rittweger J, Galer SJG. Calcium isotopes in human urine as a diagnostic tool for bone loss: additional evidence for time delays in bone response to experimental bed rest. Front Physiol. 2019;10:12.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Tacail T, Le Houedec S, Skulan JL. New frontiers in calcium stable isotope geochemistry: perspectives in present and past vertebrate biology. Chem Geol. 2020;537:119471.

    Article  CAS  Google Scholar 

  5. Chu N-C, Henderson GM, Belshaw NS, Hedges REM. Establishing the potential of ca isotopes as proxy for consumption of dairy products. Appl Geochem. 2006;21(10):1656–67.

    Article  CAS  Google Scholar 

  6. Hirata T, Tanoshima M, Suga A, Tanaka Y, Nagata Y, Shinohara A, Chiba M. Isotopic analysis of calcium in blood plasma and bone from mouse samples by multiple collector-ICP-mass spectrometry. Anal Sci. 2008;24:1501–7.

    Article  CAS  PubMed  Google Scholar 

  7. Tacail T, Albalat E, Telouk P, Balter V. A simplified protocol for measurement of Ca isotopes in biological samples. J Anal At Spectrom. 2014;29:529–353.

    Article  CAS  Google Scholar 

  8. Heuser A, Eisenhauer A, Scholz-Ahrens KE, Schrezenmeir J. Biological fractionation of stable Ca isotopes in Göttingen minipigs as a physiological model for Ca homeostasis in humans. Isot Environ Health Stud. 2016;52(6):633–48.

    Article  CAS  Google Scholar 

  9. Tanaka Y-K, Mikuni-Takagaki Y, Hidaka K, Wada-Takahashi S, Kawamata R, Hirata T. Correction of mass spectrometric interferences for rapid and precise isotope ratio measurements of calcium from biological samples using ICP-mass spectrometry. Anal Sci. 2019;35(7):793–8.

    Article  CAS  PubMed  Google Scholar 

  10. Grigoryan R, Costas-Rodríguez M, Vandenbroucke RE, Vanhaecke F. High-precision isotopic analysis of Mg and Ca in biological samples using multi-collector ICP-mass spectrometry after their sequential chromatographic isolation – application to the characterization of the body distribution of Mg and Ca isotopes in mice. Anal Chim Acta. 2020;1130:137–45.

    Article  CAS  PubMed  Google Scholar 

  11. Skulan J, Bullen T, Anbar AD, Puzas JE, Shackelford L, LeBlanc A, Smith SM. Natural calcium isotopic composition of urine as a marker of bone mineral balance. Clin Chem. 2007;53(6):1155.

    Article  CAS  PubMed  Google Scholar 

  12. Heuser A, Eisenhauer A. A pilot study on the use of natural calcium isotope (44Ca/40Ca) fractionation in urine as a proxy for the human body calcium balance. Bone. 2010;46(4):889–96.

    Article  CAS  PubMed  Google Scholar 

  13. Morgan JLL, Gordon GW, Arrua RC, Skulan JL, Anbar AD, Bullen TD. High-precision measurement of variations in calcium isotope ratios in urine by multiple collector inductively coupled plasma mass spectrometry. Anal Chem. 2011;83(18):6956–62.

    Article  CAS  PubMed  Google Scholar 

  14. Channon MB, Gordon GW, Morgan JLL, Skulan JL, Smith SM, Anbar AD. Using natural, stable calcium isotopes of human blood to detect and monitor changes in bone mineral balance. Bone. 2015;77:69–74.

    Article  CAS  PubMed  Google Scholar 

  15. Rangarajan R, Mondal S, Thankachan P, Chakrabarti R, Kurpad AV. Assessing bone mineral changes in response to vitamin D supplementation using natural variability in stable isotopes of calcium in urine. Sci Rep. 2018;8(1):16751.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Lee S-H, Park S-J, Kim K-N, Cho D-Y, Kim Y-S, Kim B-T. Coronary calcification is reversely related with bone and hair calcium: the relationship among different calcium pools in body. J Bone Metab. 2016;23(4).

  17. Gordon GW, Monge J, Channon MB, Wu Q, Skulan JL, Anbar AD, Fonseca R. Predicting multiple myeloma disease activity by analyzing natural calcium isotopic composition. Leukemia. 2014;28(10):2112–5.

    Article  CAS  PubMed  Google Scholar 

  18. Tanaka, Y-K, Yajima N, Higuchi Y, Yamato H, Hirata T. Calcium isotope signature: new proxy for net change in bone volume for chronic kidney disease and diabetic rats. Metallomics. 2017;9(12):1745–55.

  19. Klevay LM, Bistrian BR, Fleming CR, Neumann CG. Hair analysis in clinical and experimental medicine. Am J Clin Nutr. 1987;46(2):233–6.

    Article  CAS  PubMed  Google Scholar 

  20. Bacsó J, Sarkadi L, Koltay E. On endogenous and exogenous calcium content of hair samples used in XRF and PIXE measurements. Int J Appl Radiat Isot. 1982;33(1):5–11.

    Article  PubMed  Google Scholar 

  21. MacPherson A, Bacsó J. Relationship of hair calcium concentration to incidence of coronary heart disease. Sci Total Environ. 2000;255(1):11–9.

    Article  CAS  PubMed  Google Scholar 

  22. Forte G, Alimonti A, Violante N, Di Gregorio M, Senofonte O, Petrucci F, Sancesario G, Bocca B. Calcium, copper, iron, magnesium, silicon and zinc content of hair in Parkinson’s disease. J Trace Elem Med Biol. 2005;19(2):195–201.

    Article  CAS  PubMed  Google Scholar 

  23. Miekeley N, de Carvalho Fortes LM, Porto da Silveira CL, Lima MB. Elemental anomalies in hair as indicators of endocrinologic pathologies and deficiencies in calcium and bone metabolism. J Trace Elem Med Biol 2001;15(1):46–55.

  24. Park S-J, Lee S-H, Cho D-Y, Kim K-M, Lee D-J, Kim B-T. Hair calcium concentration is associated with calcium intake and bone mineral density. Int J Vitam Nutr Res. 2013;83(3):154–61.

    Article  CAS  PubMed  Google Scholar 

  25. Hinners TA, Terrill WJ, Kent JL, Colucci AV. Hair–metal binding. Environ Health Perspect. 1974;8:191–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Smart KE, Kilburn M, Schroeder M, Martin BGH, Hawes C, Marsh JM, Grovenor CRM. Copper and calcium uptake in colored hair. Int J Cosmet Sci. 2010;32(2):161–2.

    Article  Google Scholar 

  27. Skulan J, DePaolo DJ. Calcium isotope fractionation between soft and mineralized tissues as a monitor of calcium use in vertebrates. Proc Natl Acad Sci. 1999;96(24):13709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rudge JF, Reynolds BC, Bourdon B. The double spike toolbox. Chem Geol. 2009;265(3–4):420–31.

    Article  CAS  Google Scholar 

  29. Feng L, Zhou L, Yang L, Tong S, Hu Z, Gao S. Optimization of the double spike technique using peak jump collection by a Monte Carlo method: an example for the determination of Ca isotope ratios. J Anal At Spectrom. 2015;30(12):2403–11.

    Article  CAS  Google Scholar 

  30. Fantle MS, Tipper ET. Calcium isotopes in the global biogeochemical Ca cycle: implications for development of a Ca isotope proxy. Earth-Sci Rev. 2014;129:148–77.

    Article  CAS  Google Scholar 

  31. Wieser ME, Buhl D, Bouman C, Schwieters J. High precision calcium isotope ratio measurements using a magnetic sector multiple collector inductively coupled plasma mass spectrometer. J Anal At Spectrom. 2004;19(7):844.

    Article  CAS  Google Scholar 

  32. Feng L, Zhou L, Yang L, Zhang W, Wang Q, Shuoyun T, Hu Z. A rapid and simple single-stage method for Ca separation from geological and biological samples for isotopic analysis by MC-ICP-MS. J Anal At Spectrom. 2018;33(3):413–21.

    Article  Google Scholar 

  33. CIAAW. Calcium 2015 [Available from: https://www.ciaaw.org/calcium.htm].

  34. Zhu HL, Zhang ZF, Wang GQ, Liu YF, Liu F, Li X, Sun WD. Calcium isotopic fractionation during ion-exchange column chemistry and thermal ionisation mass spectrometry (TIMS) determination. Geostand Geoanal Res. 2016;40(2):185–94.

    Article  CAS  Google Scholar 

  35. Walczyk T. TIMS versus multicollector-ICP-MS: coexistence or struggle for survival? Anal Bioanal Chem. 2004;378(2):229–31.

    Article  CAS  PubMed  Google Scholar 

  36. Douthitt CB. The evolution and applications of multicollector ICPMS (MC-ICPMS). Anal Bioanal Chem. 2008;390(2):437–40.

    Article  CAS  PubMed  Google Scholar 

  37. Bürger S, Vogl J, Kloetzli U, Nunes L, Lavelle M. Chapter 14 Thermal ionisation mass spectrometry. Sector Field Mass Spectrometry for Elemental and Isotopic Analysis: The Royal Society of Chemistry; 2015. pp. 381–438.

  38. Jakubowski N, Horsky M, Roos PH, Vanhaecke F, Prohaska T. Chapter 12 Inductively coupled plasma mass spectrometry. Sector Field Mass Spectrometry for Elemental and Isotopic Analysis: The Royal Society of Chemistry; 2015. pp. 208–318.

  39. Chakrabarti R, Mondal S, Jacobson AD, Mills M, Romaniello SJ, Vollstaedt H. Review of techniques, challenges, and new developments for calcium isotope ratio measurements. Chem Geol. 2021;581:120398.

    Article  CAS  Google Scholar 

  40. Reynard LM, Henderson GM, Hedges REM. Calcium isotope ratios in animal and human bone. Geochim Cosmochim Acta. 2010;74(13):3735–50.

    Article  CAS  Google Scholar 

  41. Romaniello SJ, Field MP, Smith HB, Gordon GW, Kim MH, Anbar AD. Fully automated chromatographic purification of Sr and Ca for isotopic analysis. J Anal At Spectrom. 2015;30(9):1906–12.

    Article  CAS  Google Scholar 

  42. Bao Z, Zong C, Chen K, Lv N, Yuan H. Chromatographic purification of Ca and Mg from biological and geological samples for isotope analysis by MC-ICP-MS. Int J Mass Spectrom. 2020;448:116268.

    Article  CAS  Google Scholar 

  43. Skulan J, DePaolo DJ, Owens TL. Biological control of calcium isotopic abundances in the global calcium cycle. Geochim Cosmochim Acta. 1997;61(12):2505–10.

    Article  CAS  Google Scholar 

  44. Clementz MT, Holden P, Koch PL. Are calcium isotopes a reliable monitor of trophic level in marine settings? Int J Osteoarchaeol. 2003;13(1–2):29–36.

    Article  Google Scholar 

  45. Heuser A, Eisenhauer A. The calcium isotope composition (δ44/40Ca) of NIST SRM 915b and NIST SRM 1486. Geostand Geoanal Res. 2008;32(3):311–5.

    Article  CAS  Google Scholar 

  46. Heuser A, Tütken T, Gussone N, Galer SJG. Calcium isotopes in fossil bones and teeth—diagenetic versus biogenic origin. Geochim Cosmochim Acta. 2011;75(12):3419–33.

    Article  CAS  Google Scholar 

  47. Farkaš J, Déjeant A, Novák M, Jacobsen SB. Calcium isotope constraints on the uptake and sources of Ca2+ in a base-poor forest: a new concept of combining stable (δ44/42Ca) and radiogenic (εCa) signals. Geochim Cosmochim Acta. 2011;75(22):7031–46.

    Article  Google Scholar 

  48. Huang S, Farkaš J, Yu G, Petaev MI, Jacobsen SB. Calcium isotopic ratios and rare earth element abundances in refractory inclusions from the Allende CV3 chondrite. Geochim Cosmochim Acta. 2012;77:252–65.

    Article  CAS  Google Scholar 

  49. National Institute of Standards & Technology. Certificate of analysis - standard reference material 1400 bone ash. Gaithersburg: National Institute of Standards & Technology; 1992.

    Google Scholar 

  50. Driessens FCM, Verbeeck RK. Biominerals. Boca Raton: CRC Press; 1990.

    Google Scholar 

  51. Forte G, Bocca B, Senofonte O, Petrucci F, Brusa L, Stanzione P, Zannino S, Violante N, Alimonti A, Sancesario G. Trace and major elements in whole blood, serum, cerebrospinal fluid and urine of patients with Parkinson’s disease. J Neural Transmission. 2004;111(8):1031–40.

    Article  CAS  Google Scholar 

  52. Harrington JM, Young DJ, Essader AS, Sumner SJ, Levine KE. Analysis of human serum and whole blood for mineral content by ICP-MS and ICP-OES: development of a mineralomics method. Biol Trace Elem Res. 2014;160(1):132–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Jeruszka-Bielak M, Brzozowska A. Relationship between nutritional habits and hair calcium levels in young women. Biol Trace Elem Res. 2011;144(1):63–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Mayer AJ, Wieser ME. The absolute isotopic composition and atomic weight of molybdenum in SRM 3134 using an isotopic double-spike. J Anal At Spectrom. 2014;29(1):85–94.

    Article  CAS  Google Scholar 

  55. Yang L, Tong S, Zhou L, Hu Z, Mester Z, Meija J. A critical review on isotopic fractionation correction methods for accurate isotope amount ratio measurements by MC-ICP-MS. J Anal At Spectrom 2018.

  56. Mohamed FAA. Identifying zinc inputs to Heard and McDonald Islands region using zinc concentrations and isotopic compositions. Calgary: University of Calgary; 2020.

    Google Scholar 

  57. Zimmermann T, Mohamed AF, Reese A, Wieser ME, Kleeberg U, Pröfrock D, Irrgeher J. Zinc isotopic variation of water and surface sediments from the German Elbe River. Sci Total Environ. 2020;707:135219.

    Article  CAS  PubMed  Google Scholar 

  58. Retzmann A, Zimmermann T, Pröfrock D, Prohaska T, Irrgeher J. A fully automated simultaneous single-stage separation of Sr, Pb, and Nd using DGA Resin for the isotopic analysis of marine sediments. Anal Bioanal Chem. 2017;409(23):5463–80.

  59. Sasaki Y, Zhu Z-X, Sugo Y, Kimura T. Extraction of various metal ions from nitric acid to n-dodecanen by diglycolamide (DGA) compounds. J Nucl Sci Technol. 2007;44(3):405–9.

    Article  CAS  Google Scholar 

  60. Pourmand A, Dauphas N. Distribution coefficients of 60 elements on TODGA resin: application to Ca, Lu, Hf, U and Th isotope geochemistry. Talanta. 2010;81:741–53.

    Article  CAS  PubMed  Google Scholar 

  61. Retzmann A, Walls D, Miller K, Wieser M, Irrgeher J, Prohask T. Assessing the potential of online ICP–MS analysis to optimize Ca/matrix separation using DGA Resin for subsequent isotopic analysis. Monatsh Chem. 2021;152:401–10.

    Article  CAS  Google Scholar 

  62. Feng L-p, Zhou L, Yang L, DePaolo DJ, Tong S-Y, Liu Y-S, Owens TL, Gao S. Calcium isotopic compositions of sixteen USGS reference materials. Geostand Geoanal Res. 2017;41(1):93–106.

    Article  Google Scholar 

  63. Kragten J. Tutorial review. Calculating standard deviations and confidence intervals with a universally applicable spreadsheet technique. Analyst. 1994;119(10):2161–5.

    Article  CAS  Google Scholar 

  64. Amini M, Eisenhauer A, Böhm F, Holmden C, Kreissig K, Hauff F, Jochum KP. Calcium isotopes (δ44/40Ca) in MPI-DING reference glasses, USGS rock powders and various rocks: evidence for ca isotope fractionation in terrestrial silicates. Geostand Geoanal Res. 2009;33(2):231–47.

    Article  CAS  Google Scholar 

  65. Huang S, Farkaš J, Jacobsen SB. Stable calcium isotopic compositions of Hawaiian shield lavas: evidence for recycling of ancient marine carbonates into the mantle. Geochim Cosmochim Acta. 2011;75(17):4987–97.

    Article  CAS  Google Scholar 

  66. Steuber T, Buhl D. Calcium-isotope fractionation in selected modern and ancient marine carbonates. Geochim Cosmochim Acta. 2006;70(22):5507–21.

    Article  CAS  Google Scholar 

  67. Hippler D, Witbaard R, van Aken HM, Buhl D, Immenhauser A. Exploring the calcium isotope signature of Arctica islandica as an environmental proxy using laboratory- and field-cultured specimens. Palaeogeogr Palaeoclimatol Palaeoecol. 2013;373:75–87.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Courtney Kruschel for her support in the lab and Alex Tennant for his support with the DS software.

Funding

This work was funded by the Chemical Monthly Fellowship (2018) of the Austrian Academy of Sciences (ÖAW), by the Discovery Research Grant awarded by the Natural Sciences and Engineering Research Council of Canada (NSERC), and by the Faculty of Science Grand Challenges Fund of the University of Calgary.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. Wieser.

Ethics declarations

Ethics approval

No human participants or animals are involved in the present study. All analyzed biological tissue samples are commercially available certified reference materials.

Conflict of interest

The authors declare no competing interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published in the topical collection celebrating ABCs 20th Anniversary.

Supplementary information

ESM 1

(DOCX 26 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Retzmann, A., Walls, D., Miller, K.A. et al. A double-spike MC TIMS measurement procedure for low-amount Ca isotopic analysis of limited biological tissue samples. Anal Bioanal Chem 414, 675–689 (2022). https://doi.org/10.1007/s00216-021-03650-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-021-03650-8

Keywords

Navigation