Skip to main content
Log in

Exploring the enantiomeric 13C position-specific isotope fractionation: challenges and anisotropic NMR-based analytical strategy

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Trying to answer the intriguing and fundamental question related to chiral induction/amplification at the origin of homochirality in Nature: “Is there a relationship between enantiomeric and isotopic fractionation of carbon 13 in chiral molecules?” is a difficult but stimulating challenge. Although isotropic 13C-PSIA NMR is a promising tool for the determination of (13C/12C) ratios capable of providing key 13C isotopic data for understanding the reaction mechanisms of biological processes or artificial transformations, this method does not provide access to any enantiomeric 13C isotopic data unless mirror-image isomers are first physically separated. Interestingly, 13C spectral enantiodiscriminations can be potentially performed in situ in the presence of enantiopure entities as chiral-europium complexes or chiral liquid crystals (CLCs). In this work, we explored for the first time the capabilities of the anisotropic 13C-{1H} NMR using PBLG-based lyotropic CLCs as enantiodiscriminating media in the context of the enantiomeric position-specific 13C isotope fractionation (EPSIF), within the requested precision of the order of the permil. As enantiomeric NMR signals are discriminated on the basis of a difference of 13C residual chemical shift anisotropy (13C-RCSA) prior to being deconvoluted, analysis of enantiomeric mixtures becomes possible. The analytical potential of this approach when using poly-γ-benzyl-L-glutamate (PBLG) is presented, and the preliminary quantitative results on small model chiral molecules obtained at 17.5 T with a cryogenic NMR probe are reported and discussed.

Graphical abstract

A promising analytical approach based on anisotropic irm-13C-NMR spectrometry to potentially reveal the natural 13C/12C isotopic enantiofractionation effects in organic chiral molecules is proposed and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Nijenhuis I, Richnow HH. Stable isotope fractionation concepts for characterizing biotransformation of organohalides. Curr Opin Biotechnol. 2016;41:108–13.

    Article  PubMed  CAS  Google Scholar 

  2. Hofstetter TB, Berg M. Assessing transformation processes of organic contaminants by compound-specific stable isotope analysis. TrAC Trends Anal Chem. 2011;30:618–27.

    Article  CAS  Google Scholar 

  3. Badea SL, Danet AF. Enantioselective stable isotope analysis (ESIA) - a new concept to evaluate the environmental fate of chiral organic contaminants. Sci Total Environ. 2015;514:459–66.

    Article  PubMed  CAS  Google Scholar 

  4. Green MM, Jain V. Homochirality in life: two equal runners. One Tripped Orig Life Evol Biosph. 2010;40:111–8.

    Article  PubMed  Google Scholar 

  5. Dickinson MR, Lister AM, Penkman KEH. A new method for enamel amino acid racemization dating: a closed system approach. Quat Geochronol. 2019;50:29–46.

    Article  Google Scholar 

  6. Engel MH, Goodfriend GA, Qian Y, Macko SA. Indigeneity of organic matter in fossils: a test using stable isotope analysis of amino acid enantiomers in Quaternary mollusk shells. Proc Nadl Acad Sci USA. 1994;91:10475–8.

    Article  CAS  Google Scholar 

  7. Aelion CM, Höhener P, Hunkeler D, Aravena R. Environmental isotopes in biodegradation and bioremediation. Boca Raton: CRC; Taylor & Francis [distributor]; 2010.

    Google Scholar 

  8. Qiu S, Gözdereliler E, Weyrauch P, Magana Lopez EC, Kohler H-PE, Sørensen SR, Meckenstock RU, Elsner M. Small 13C/12C fractionation contrasts with large enantiomer fractionation in aerobic biodegradation of phenoxy acids. Environ Sci Technol. 2014;48:5501–11.

    Article  PubMed  CAS  Google Scholar 

  9. Omori AT, Gonçalves Lobo F, Gonçalves do Amaral AC, De Souza de Oliveira C. Purple carrots: better biocatalysts for the enantioselective reduction of acetophenones than common orange carrots (D. carota). J Mol Catal B Enzym. 2016;127:93–7.

    Article  CAS  Google Scholar 

  10. Itoh N. Use of the anti-prelog stereospecific alcohol dehydrogenase from Leifsonia and Pseudomonas for producing chiral alcohols. Appl Microbiol Biotechnol. 2014;98:3889–904.

    Article  PubMed  CAS  Google Scholar 

  11. Corey EJ, Guzman-Perez A. The catalytic enantioselective construction of molecules with quaternary carbon stereocenters. Angew Chem Int Ed. 1998;37:388–401.

    Article  Google Scholar 

  12. Elsila JE, Aponte JC, Blackmond DG, Burton AS, Dworkin JP, Glavin DP. Meteoritic amino acids: diversity in compositions reflects parent body histories. ACS Cent Sci. 2016;2:370–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Neidhardt FC, Ingraham JL, Low KB, Magasanik, M., Schaechter B, Umbarger HE, Eds., Esterichia coli and Salmonella Typhimurium. Cellular and Molecular Biology, American Society for Microbiology, 1987.

  14. Ward JB. Biosynthesis of peptidoglycan: points of attack by wall inhibitors. Pharmac. Ther. 1984;25(3):327–69.

    Article  CAS  Google Scholar 

  15. Amadasi A, Bertoldi M, Contestabile R, Bettati S, Cellini B, di Salvo ML, Borri-Voltattorni C, Bossa F, Mozzarelli A. Pyridoxal 5′-phosphate enzymes as targets for therapeutic agents. Curr Med Chem. 2007;14(12):1291–324.

    Article  PubMed  CAS  Google Scholar 

  16. Walsh CT. Enzymes in the D-alanine branch of bacterial cell wall peptidoglycan assembly. J Biol Chem. 1989;264:2393–6.

    Article  PubMed  CAS  Google Scholar 

  17. Fotheringham IG, Kidman GE, McArthur BS, Robinson LE, Scollar MP. Aminotransferase-catalyzed conversion of n-amino acids to L-amino acids. Biotechnol Prog. 1991;7:380–1.

    Article  CAS  Google Scholar 

  18. Chan-Huot M, Lesot P, Pelupessy P, Duma L, Duchambon P, Bodenhausen G, Toney MD, Reddy UV, Suryaprakash N. ‘On-the-fly’ kinetics of enzymatic racemization using deuterium NMR in DNA-based, oriented chiral solvents. Anal Chem. 2013;85(9):4694–7.

    Article  PubMed  CAS  Google Scholar 

  19. Finefield JM, Sherman DH, Kreitman M, Williams RM. Enantiomeric natural products: occurrence and biogenesis. Angew Chem Int Ed. 2012;51:4802–36.

    Article  CAS  Google Scholar 

  20. Engel K-H. Chirality: an important phenomenon regarding biosynthesis, perception, and authenticity of flavour compounds. J Agric Food Chem. 2020;68:10265–74.

    Article  PubMed  CAS  Google Scholar 

  21. Barabás B, Caglioti L, Micskei K, Zucchi C, Pályi G. Isotope chirality and asymmetric autocatalysis: a possible entry to biological chirality. Orig Life Evol Biosph. 2008;38:317–27.

    Article  PubMed  CAS  Google Scholar 

  22. Takano Y, Chikaraishi Y, Ohkouchi N. Enantiomer-specific isotope analysis (ESIA) of D- and L-alanine: nitrogen isotopic hetero- and homogeneity by microbial process and chemical process. In: Ohkouchi N, Tayasu I, Koba K, editors. Earth, life, and isotopes. Kyoto: Kyoto University Press; 2010. p. 387–402.

  23. Kawasaki T, Soai K. Asymmetric induction arising from enantiomerically enriched carbon-13 isotopomers and highly sensitive chiral discrimination by asymmetric autocatalysis. Bull Chem Soc Jpn. 2011;84:879–92.

    Article  CAS  Google Scholar 

  24. Juchelka D, Beck T, Hener U, Dettmar F, Mosandl A. Multidimensional gas chromatography coupled on-line with isotope ratio mass spectrometry (MDGC-IRMS): progress in the analytical. J High Resol Chromatogr. 1998;21:145–51.

    Article  CAS  Google Scholar 

  25. Muccio Z, Jackson GP. Isotope ratio mass spectrometry. Analyst. 2009;134:213–22.

    Article  PubMed  CAS  Google Scholar 

  26. Badea S-L, Vogt C, Gehre M, Fischer A, Danet A-F, Richnow H-H. Development of an enantiomer-specific stable carbon isotope analysis (ESIA) method for assessing the fate of αlpha-hexachlorocyclohexane in the environment. Rapid Commun Mass Spectrom. 2011;25:1363–72.

    Article  PubMed  CAS  Google Scholar 

  27. Bashir S, Fischer A, Nijenhuis I, Richnow H-H. Enantioselective carbon stable isotope fractionation of hexachlorocyclohexane during aerobic biodegradation by Sphingobium spp. Environ Sci Technol. 2013;47:11432–9.

    Article  PubMed  CAS  Google Scholar 

  28. Milosevic N, Qui S, Elsner M, Einsiedl F, Maier MP, Bensch HKV, Albrechtsen H-J, Bjerg PL. Combined isotope and enantiomer analysis to assess the fate of phenoxy acids in a heterogeneous geologic setting at an old landfill. Water Res. 2013;47:637–49.

  29. Maier MP, Qiu S, Elsner M. Enantioselective stable isotope analysis (ESIA) of polar herbicides. Anal Bioanal Chem. 2013;405:2825–31.

    Article  PubMed  CAS  Google Scholar 

  30. Jammer S, Voloshenko A, Gelman F, Lev O. Chiral and isotope analyses for assessing the degradation of organic contaminants in the environment: Rayleigh dependence. Environ Sci Technol. 2014;48:3310–8.

    Article  PubMed  CAS  Google Scholar 

  31. Jin B, Rolle M. Joint interpretation of enantiomer and stable isotope fractionation for chiral pesticides degradation. Water Res. 2016;105:178–86.

    Article  PubMed  CAS  Google Scholar 

  32. Liu Y, Bashir S, Stollberg R, Trabitzsch R, Weiss H, Paschke H, Nijenhuis I, Richnow H-H. Compoundspecific and enantioselective stable isotope analysis as tools to monitor transformation of hexachlorocyclohexane (HCH) in a complex aquifer system. Environ Sci Technol. 2017;51:8909–16.

    Article  PubMed  CAS  Google Scholar 

  33. Tang B, Luo X-J, Zeng Y-H, Mai B-X. Tracing the biotransformation of PCBs and PBDEs in common carp (Cyprinus carpio) using compound-specific and enantiomer-specific stable carbon isotope analysis. Environ Sci Technol. 2017;51:2705–13.

    Article  PubMed  CAS  Google Scholar 

  34. Masbou J, Meite F, Guyot B, Imfeld G. Enantiomer-specific stable carbon isotope analysis (ESIA) to evaluate degradation of chiral fungicide metalaxyl in soils. J Hazard Mater. 2018;353:99–107.

    Article  PubMed  CAS  Google Scholar 

  35. Liu Y, Wu L, Kohli P, Kumar R, Stryhanyuk H, Nijenhuis I, Lal R, Richnow H-H. Enantiomer and carbon isotope fractionation of α-hexachlorohexane by Sphingobium indicum strain B90A and the corresponding enzymes. Environ Sci Technol. 2019;53:8715–24.

    Article  PubMed  CAS  Google Scholar 

  36. Botosoa EP, Caytan E, Silvestre V, Robins RJ, Akoka S, Remaud GS. Unexpected fractionation in site-specific 13C isotopic distribution detected by quantitative 13C NMR at natural abundance. J Am Chem Soc. 2008;130:414–5.

    Article  PubMed  CAS  Google Scholar 

  37. Caytan E, Botosoa E, Silvestre V, Robins RJ, Akoka S, Remaud GS. Accurate quantitative C-13 NMR spectroscopy: repeatability over time of site-specific C-13 isotope ratio determination. Anal Chem. 2007;79(21):8266–69.

  38. Jézéquel T, Joubert V, Giraudeau P, Remaud GS, Akoka S. The new face of isotopic NMR at natural abundance. Magn Reson Chem. 2017;55(2):77–90.

    Article  PubMed  CAS  Google Scholar 

  39. Remaud GS, Giraudeau P, Lesot P, Akoka S. Isotope ratio monitoring by NMR. Part 1: recent advances. In: Webb G, editor. Modern magnetic resonance. Cham: Springer; 2017.

    Google Scholar 

  40. Robins RJ, Remaud GS, Akoka S. Isotope ratio monitoring 13C nuclear magnetic resonance spectrometry for the analysis of position-specific isotope ratios. In: Harris ME, Anderson VE, editors. Methods in enzymology, Vol. 596. Cambridge: Academic Press; 2017.

    Google Scholar 

  41. Remaud GS, Akoka S. Isotope ratio monitoring by NMR. Part 3: New applications for traceability of active pharmaceutical ingredients. In: Webb G, editor. Modern magnetic resonance. Cham: Springer; 2017.

    Google Scholar 

  42. Eliel EL, Wilen SH. Stereochemistry of organic compounds. New York: John Wiley & Sons; 1994.

    Google Scholar 

  43. Subramanian G. In: Subramanian G, editor. Chiral separation technique, a practical approach. 2nd ed. Weimheim: Wiley-VCH; 2000.

    Chapter  Google Scholar 

  44. Wenzel TJ. Discrimination of chiral compounds using NMR spectroscopy. New Jersey: John Wiley & Sons, INC; 2007.

    Google Scholar 

  45. Emsley JW, Lindon JC. NMR spectroscopy using liquid crystal solvents. Oxford: Pergamon; 1975.

    Google Scholar 

  46. Sarfati M, Lesot P, Merlet D, Courtieu J. Theoretical and experimental aspects of enantiomeric differentiation using natural abundance multinuclear NMR spectroscopy in chiral polypeptide liquid crystals. Chem Commun. 2000:2069–81.

  47. Lesot P, Aroulanda C, Berdagué P, Meddour A, Merlet D, Farjon J, Giraud N, Lafon O. Three fertile decades of methodological developments and analytical challenges. Prog Nucl Mag Reson Spectrosc. 2020;116:85–154.

    Article  CAS  Google Scholar 

  48. Meddour A, Berdagué P, Hedli A, Courtieu J, Lesot P. Proton-decoupled carbon-13 NMR spectroscopy in a lyotropic chiral nematic solvent as an analytical tool for the measurement of the enantiomeric excess. J Am Chem Soc. 1997;119(19):4502–8.

    Article  CAS  Google Scholar 

  49. Kovacs H, Moskau D, Spraul M. Cryogenically cooled probes, a leap in NMR technology. Prog Nucl Magn Reson Spectrosc. 2005;46(2–3):131–55.

    Article  CAS  Google Scholar 

  50. Marathias VM, Tate PA, Papaioannou N, Massefski W. An improved method for determining enantiomeric excess by 13C-NMR in chiral liquid crystal media. Chirality. 2010;22(9):838–43.

    Article  PubMed  CAS  Google Scholar 

  51. Caytan E, Remaud GS, Tenailleau E, Akoka S. Precise and accurate quantitative C-13 NMR with reduced experimental time. Talanta. 2007;71(3):1016–21.

    Article  PubMed  CAS  Google Scholar 

  52. Kingsley PB. Methods of measuring spin-lattice (T1) relaxation times: an annotated bibliography. Concepts in Magn Reson. 1999;11(4):243–76.

    Article  CAS  Google Scholar 

  53. Perch NMR. Software. Finland: University of Kuopio. p. AC030385E.

  54. Silvestre V, Mboula VM, Jouitteau C, Akoka S, Robins RJ, Remaud GS. Isotopic 13C NMR spectrometry to assess counterfeiting of active pharmaceutical ingredients: sitespecific 13C content of aspirin and paracetamol. J Pharmaceut Biomed Anal. 2009;50(3):336–41.

    Article  CAS  Google Scholar 

  55. Craig H. Isotopic standards for carbon and oxygen and correction factors for mass-spectrometric analysis of carbon dioxide. Geochim Cosmochim Acta. 1957;12(1):133–49.

    Article  CAS  Google Scholar 

  56. Meija J, Coplen TB, Berglund M, Brand WA, De Bièvre P. Gröning M. Holden NE, Irrgeher J, Loss RD, Walczyk T, Prohaska T. Isotopic compositions of the elements 2013 (IUPAC Technical Report). Pure Appl Chem. 2016;88(3):293–306.

    Article  CAS  Google Scholar 

  57. Lesot P, Serhan Z, Billault I. Recent advances in the analysis of the site-specific isotopic fractionation of metabolites such as fatty acids using anisotropic natural abundance 2H NMR spectroscopy: application on conjugated linolenic methyl esters. Anal Bioanal Chem. 2011;399(3):1187–200.

  58. Lesot P, Berdagué P, Meddour A, Kreiter A, Noll M, Reggelin M. 2H and 13C NMR-based enantiodetection using polyacetylene versus polypeptide aligning media: versatile and complementary tools for chemists. ChemPluschem. 2019;84(2):144–53.

  59. Tenailleau E, Remaud G, Akoka S. Quantification of the 1H decoupling effects on the accuracy of 13C NMR measurements. Instrum Sci Technol. 2005;33(4):391–9.

    Article  CAS  Google Scholar 

  60. Bayle K, Gilbert A, Julien M, Yamada K, Silvestre V, Robins RJ, Akoka S, Yoshida N, Remaud GS. Conditions to obtain precise and true measurements of the intramolecular 13C distribution in organic molecules by isotopic 13C nuclear magnetic resonance spectrometry. Anal Chim Acta. 2014;846:1–7.

    Article  PubMed  CAS  Google Scholar 

  61. Shaka AJ, Keeler J, Freeman R. An improved sequence for broadband decoupling: WALTZ-16. J. Magn. Reson. 1983;52:335–8.

    CAS  Google Scholar 

  62. Tenaillau E, Akoka S. Adiabatic 1H decoupling scheme for very accurate intensity measurements in 13C NMR. J Magn Reson. 2007;185(1):50–8.

    Article  CAS  Google Scholar 

  63. Akoka S, Remaud GS. NMR-based isotopic and isotopomic analysis. Prog. Nucl. Magn. Reson. Spectrosc. 2020;120-121:1–24.

  64. Levy GC, Cargioli JD. Spin-lattice relaxation in solutions containing Cr(III) paramagnetic relaxation agents. J Magn Reson. 1973;10(2):231–4.

    CAS  Google Scholar 

  65. Levy GC, Edlund U. Carbon-13 chemical shift anisotropy relaxation in organic compounds. J Am Chem Soc. 1975;97(17):5031–2.

    Article  CAS  Google Scholar 

  66. Differentiation of enantiomers II. In Topics in current chemistry. vol 341. Publisher: Springer International Publishing. Schurig V. editor; 2013.

  67. Thibaudeau C, Remaud G, Silvestre V, Akoka S. Performance evaluation of quantitative adiabatic 13C NMR pulse sequences for site-specific isotopic measurements. Anal Chem. 2010;82:5582–90.

    Article  PubMed  CAS  Google Scholar 

  68. Hajjar G, Rizk T, Bejjani J, Akoka S. Metabisotopomics of triacylglycerols from animal origin: a simultaneous metabolomic and isotopic profiling using C-13 INEPT. Food Chem. 2020;315:126325,1–8.

Download references

Acknowledgements

The authors thank CNRS (INC) and its specific financial contribution to this project (ISOTOP 2018-2019 grant) as well as for its recurrent funding of science. They gratefully acknowledge Mathilde Grand (CEISAM) for help with irm-MS analysis and Achille Khalid for his participation to this project in the frame of his first year of master student’s internship at ICMMO, as well as the Université Paris-Saclay (formerly, Université de Paris-Sud) for its support.

Funding

This work was the subject of a specific grant from the CNRS as part of the ISOTOP 2018/ISOTOP 2019 program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Philippe Lesot or Gérald Remaud.

Ethics declarations

Research involving human participants and/or animals

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 2955 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lesot, P., Berdagué, P., Silvestre, V. et al. Exploring the enantiomeric 13C position-specific isotope fractionation: challenges and anisotropic NMR-based analytical strategy. Anal Bioanal Chem 413, 6379–6392 (2021). https://doi.org/10.1007/s00216-021-03599-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-021-03599-8

Keywords

Navigation