Skip to main content
Log in

A review of biosensors for the detection of B-type natriuretic peptide as an important cardiovascular biomarker

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Heart disease, as the most serious threat to human health globally, is responsible for rising mortality rates, largely due to lifestyle and diet. Unfortunately, the main problem for patients at high risk of heart disease is the validation of prognostic tests. To this end, the detection of cardiovascular biomarkers has been employed to obtain pathological and physiological information in order to improve prognosis and early-stage diagnosis of chronic heart failure. Short-term changes in B-type natriuretic peptide are known as a standard and important biomarker for diagnosis of heart failure. The most important problem for detection is low concentration and short half-life in the blood. The normal concentration of BNP in blood is less than 7 nM (25 pg/mL), which increases significantly to more than 80 pg/mL. Therefore, the development of new biosensors with better sensitivity, detection limit, and dynamic range than current commercial kits is urgently needed. This review classifies the biosensors designed for detection of BNP into electrochemical, optical, microfluidic, and lateral-flow immunoassay techniques. The review clearly demonstrates that a variety of immunoassay, aptasensor, enzymatic and catalytic nanomaterials, and fluorophores have been successfully employed for detection of BNP at low attomolar ranges.

Graphical abstract

Dtection of B-type natriuretic peptide with biosensors

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Alwan A. Global status report on noncommunicable diseases 2010. Geneva: Switzerland World Health Organization; 2011.

    Google Scholar 

  2. Mendis S. Cardiovascular risk assessment and management in developing countries. Vasc Health Risk Manag. 2005;1(1):15.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Hajifathalian K, Ueda P, Lu Y, Woodward M, Ahmadvand A, Aguilar-Salinas CA, et al. A novel risk score to predict cardiovascular disease risk in national populations (Globorisk): a pooled analysis of prospective cohorts and health examination surveys. Lancet Diabetes Endocrinol. 2015;3(5):339–55.

    Article  PubMed  Google Scholar 

  4. Selvarajah S, Kaur G, Haniff J, Cheong KC, Hiong TG, van der Graaf Y, et al. Comparison of the Framingham risk SCORE, SCORE and WHO/ISH cardiovascular risk prediction models in an Asian population. Int J Cardiol Heart Vasc. 2014;176(1):211–8.

    Article  Google Scholar 

  5. D’Aiuto F, Orlandi M, Gunsolley JC. Evidence that periodontal treatment improves biomarkers and CVD outcomes. J Periodontol. 2013;84(4-s):S85–S105.

    Article  PubMed  Google Scholar 

  6. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, et al. American heart association statistics committee and stroke statistics subcommittee. Heart disease and stroke statistics–2015 update: a report from the American Heart Association. Circulation. 2015;131(4):e29–e322.

    PubMed  Google Scholar 

  7. Brouwers FP, Hillege HL, van Gilst WH, van Veldhuisen DJ. Comparing new onset heart failure with reduced ejection fraction and new onset heart failure with preserved ejection fraction: an epidemiologic perspective. Curr Heart Fail Rep. 2012;9(4):363–8.

    Article  PubMed  Google Scholar 

  8. Adebayo SO, Olunuga TO, Durodola A, Ogah OS. Heart failure: definition, classification, and pathophysiology–a mini-review. Nig J Cardiol. 2017;14(1):9.

    Article  Google Scholar 

  9. Thomas JT, Kelly RF, Thomas SJ, Stamos TD, Albasha K, Parrillo JE, et al. Utility of history, physical examination, electrocardiogram, and chest radiograph for differentiating normal from decreased systolic function in patients with heart failure. Am J Med. 2002;112(6):437–45.

    Article  PubMed  Google Scholar 

  10. Kannel WB, D ' Agostino RB, Silbershatz H, Belanger AJ, Wilson PW, Levy D. Profile for estimating risk of heart failure. Arch Intern Med. 1999;159(11):1197–204.

    Article  CAS  PubMed  Google Scholar 

  11. Kazanegra R, Cheng V, Garcia A, Krishnaswamy P, Gardetto N, Clopton P, et al. A rapid test for B-type natriuretic peptide correlates with falling wedge pressures in patients treated for decompensated heart failure: a pilot study. J Card Fail. 2001;7(1):21–9.

    Article  CAS  PubMed  Google Scholar 

  12. Braunwald E. Biomarkers in heart failure. NEJM. 2008;358(20):2148–59.

    Article  CAS  PubMed  Google Scholar 

  13. van Kimmenade RR, Januzzi JL. Emerging biomarkers in heart failure. Clin Chem. 2012;58(1):127–38.

    Article  PubMed  Google Scholar 

  14. Sudoh T, Minamino N, Kangawa K, Matsuo H. C-type natriuretic peptide (CNP): a new member of natriuretic peptide family identified in porcine brain. Biochem Biophys Res Commun. 1990;168(2):863–70.

    Article  CAS  PubMed  Google Scholar 

  15. MEMBERS NWG, Morrow DA, Cannon CP, Jesse RL, Newby LK, Ravkilde J, et al. National Academy of Clinical Biochemistry Laboratory medicine practice guidelines: clinical characteristics and utilization of biochemical markers in acute coronary syndromes. Circ J. 2007;115(13):e356–e75.

    Google Scholar 

  16. Weber M, Hamm C. Role of B-type natriuretic peptide (BNP) and NT-proBNP in clinical routine. Heart J. 2006;92(6):843–9.

    Article  CAS  Google Scholar 

  17. Burnett J Jr, Granger J, Opgenorth T. Effects of synthetic atrial natriuretic factor on renal function and renin release. Am J Physiol Renal Physiol. 1984;247(5):F863–F6.

    Article  CAS  Google Scholar 

  18. Cataliotti A, Boerrigter G, Costello-Boerrigter LC, Schirger JA, Tsuruda T, Heublein DM, et al. Brain natriuretic peptide enhances renal actions of furosemide and suppresses furosemide-induced aldosterone activation in experimental heart failure. Circ J. 2004;109(13):1680–5.

    Article  CAS  Google Scholar 

  19. Mangiafico S, Costello-Boerrigter LC, Andersen IA, Cataliotti A, Burnett JC Jr. Neutral endopeptidase inhibition and the natriuretic peptide system: an evolving strategy in cardiovascular therapeutics. Eur Heart J. 2012;34(12):886–93.

    Article  PubMed  PubMed Central  Google Scholar 

  20. de Bold AJ, Bruneau BG. Kuroski de Bold ML. Mechanical and neuroendocrine regulation of the endocrine heart. Cardiovasc Res. 1996;31(1):7–18.

    Article  PubMed  Google Scholar 

  21. Flynn TG, Mercedes L, Adolfo J. The amino acid sequence of an atrial peptide with potent diuretic and natriuretic properties. Biochem Biophys Res Commun. 1983;117(3):859–65.

    Article  CAS  PubMed  Google Scholar 

  22. Kangawa K, Matsuo H. Purification and complete amino acid sequence of α-human atrial natriuretic polypeptide (α-hANP). Biochem Biophys Res Commun. 1984;118(1):131–9.

    Article  CAS  PubMed  Google Scholar 

  23. Sudoh T, Kangawa K, Minamino N, Matsuo H. A new natriuretic peptide in porcine brain. Nature. 1988;332(6159):78.

    Article  CAS  PubMed  Google Scholar 

  24. Kambayashi Y, Nakao K, Mukoyama M, Saito Y, Ogawa Y, Shiono S, et al. Isolation and sequence determination of human brain natriuretic peptide in human atrium. FEBS Lett. 1990;259(2):341–5.

    Article  CAS  PubMed  Google Scholar 

  25. Tamura N, Ogawa Y, Yasoda A, Itoh H, Saito Y, Nakao K. Two cardiac natriuretic peptide genes (atrial natriuretic peptide and brain natriuretic peptide) are organized in tandem in the mouse and human genomes. J Mol Cell Cardiol. 1996;28(8):1811–5.

    Article  CAS  PubMed  Google Scholar 

  26. van Kimmenade RR, Januzzi JL Jr. The evolution of the natriuretic peptides–current applications in human and animal medicine. J Vet Cardiol. 2009;11:S9–S21.

    Article  PubMed  Google Scholar 

  27. Qi W, Mathisen P, Kjekshus J, Simonsen S, Bjørnerheim R, Endresen K, et al. Natriuretic peptides in patients with aortic stenosis. Am Heart J. 2001;142(4):725–32.

    Article  CAS  PubMed  Google Scholar 

  28. Nakao K, Mukoyama M, Hosoda K. Suga S-i, Ogawa Y, Saito Y, et al. biosynthesis, secretion, and receptor selectivity of human brain natriuretic peptide. Can J Physiol Pharmacol. 1991;69(10):1500–6.

    Article  CAS  PubMed  Google Scholar 

  29. Nakamura S, Naruse M, Naruse K, Kawana M, Nishikawa T, Hosoda S, et al. Atrial natriuretic peptide and brain natriuretic peptide coexist in the secretory granules of human cardiac myocytes. Am J Hypertens. 1991;4(11):909–12.

    Article  CAS  PubMed  Google Scholar 

  30. Baggish AL, van Kimmenade RR, Januzzi JL Jr. The differential diagnosis of an elevated amino-terminal pro–B-type natriuretic peptide level. Am J Cardiol. 2008;101(3):S43–S8.

    Article  Google Scholar 

  31. Kim H-N, Januzzi JL Jr. Natriuretic peptide testing in heart failure. Circ J. 2011;123(18):2015–9.

    Article  Google Scholar 

  32. Di Angelantonio E, Chowdhury R, Sarwar N, Ray KK, Gobin R, Saleheen D, et al. B-type natriuretic peptides and cardiovascular risk: systematic review and meta-analysis of 40 prospective studies. Circ J. 2009;120(22):2177–87.

    Article  Google Scholar 

  33. Lainscak M, von Haehling S, Anker SD. Natriuretic peptides and other biomarkers in chronic heart failure: from BNP, NT-proBNP, and MR-proANP to routine biochemical markers. Int J Cardiol Heart Vasc. 2009;132(3):303–11.

    Article  Google Scholar 

  34. Hama N, Itoh H, Shirakami G, Nakagawa O. Suga S-i, Ogawa Y, et al. rapid ventricular induction of brain natriuretic peptide gene expression in experimental acute myocardial infarction. Circ J. 1995;92(6):1558–64.

    Article  CAS  Google Scholar 

  35. Bayés-Genís A, Santaló-Bel M, Zapico-Muñiz E, Lopez L, Cotes C, Bellido J, et al. N-terminal probrain natriuretic peptide (NT-proBNP) in the emergency diagnosis and in-hospital monitoring of patients with dyspnoea and ventricular dysfunction. Eur J Heart Fail. 2004;6(3):301–8.

    Article  PubMed  Google Scholar 

  36. Jiang J, Wu S, Wang W, Chen S, Peng J, Zhang X, et al. Ectodomain shedding and autocleavage of the cardiac membrane protease corin. J Biol Chem. 2011:jbc. M110. 185082.

  37. Clerico A, Giannoni A, Vittorini S, Passino C. Thirty years of the heart as an endocrine organ: physiological role and clinical utility of cardiac natriuretic hormones. Am J Physiol Heart Circ Physiol. 2011;301(1):H12–20.

    Article  CAS  PubMed  Google Scholar 

  38. Holmes S, Espiner E, Richards A, Yandle T, Frampton C. Renal, endocrine, and hemodynamic effects of human brain natriuretic peptide in normal man. J Clin Endocrinol Metab. 1993;76(1):91–6.

    CAS  PubMed  Google Scholar 

  39. Mukoyama M, Nakao K, Hosoda K, Suga S, Saito Y, Ogawa Y, et al. Brain natriuretic peptide as a novel cardiac hormone in humans. Evidence for an exquisite dual natriuretic peptide system, atrial natriuretic peptide and brain natriuretic peptide. J Clin Investig. 1991;87(4):1402–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. de Lemos JA, McGuire DK, Drazner MH. B-type natriuretic peptide in cardiovascular disease. Lancet. 2003;362(9380):316–22.

    Article  PubMed  Google Scholar 

  41. Potter LR, Abbey-Hosch S, Dickey DM. Natriuretic peptides, their receptors, and cyclic guanosine monophosphate-dependent signaling functions. Endocr Rev. 2005;27(1):47–72.

    Article  PubMed  Google Scholar 

  42. Boerrigter G, Burnett JC Jr. Recent advances in natriuretic peptides in congestive heart failure. Expert Opin Investig Drugs. 2004;13(6):643–52.

    Article  CAS  PubMed  Google Scholar 

  43. Cowie MR, Mendez GF. BNP and congestive heart failure. Prog Cardiovasc Dis. 2002;44(4):293–321.

    Article  CAS  PubMed  Google Scholar 

  44. Miyazaki J, Nishizawa H, Kambayashi A, Ito M, Noda Y, Terasawa S, et al. Increased levels of soluble corin in pre-eclampsia and fetal growth restriction. Placenta. 2016;48:20–5.

    Article  CAS  PubMed  Google Scholar 

  45. Seino Y, Ogawa A, Yamashita T, Fukushima M. Ogata Ki, Fukumoto H, et al. application of NT-proBNP and BNP measurements in cardiac care: a more discerning marker for the detection and evaluation of heart failure. Eur J Heart Fail. 2004;6(3):295–300.

    Article  CAS  PubMed  Google Scholar 

  46. Lee DS, Vasan RS. Novel markers for heart failure diagnosis and prognosis. Curr Opin Cardiol. 2005;20(3):201–10.

    Article  PubMed  Google Scholar 

  47. McDonnell B, Hearty S, Leonard P, O ' Kennedy R. Cardiac biomarkers and the case for point-of-care testing. Clin Biochem. 2009;42(7–8):549–61.

    Article  CAS  PubMed  Google Scholar 

  48. Clerico A, Franzini M, Masotti S, Prontera C, Passino C. State of the art of immunoassay methods for B-type natriuretic peptides: an update. Crit Rev Clin Lab Sci. 2015;52(2):56–69.

    Article  CAS  PubMed  Google Scholar 

  49. Mayo DD, Colletti JE, Kuo DC. Brain natriuretic peptide (BNP) testing in the emergency department. J Emerg Med. 2006;31(2):201–10.

    Article  PubMed  Google Scholar 

  50. Dhaliwal AS, Deswal A, Pritchett A, Aguilar D, Kar B, Souchek J, et al. Reduction in BNP levels with treatment of decompensated heart failure and future clinical events. J Card Fail. 2009;15(4):293–9.

    Article  CAS  PubMed  Google Scholar 

  51. Del Ry S, Clerico A, Giannessi D, Andreassi M, Caprioli R, Iascone M, et al. Measurement of brain natriuretic peptide in plasma samples and cardiac tissue extracts by means of an immunoradiometric assay method. Scand J Clin Lab Inv. 2000;60(2):81–90.

    Article  Google Scholar 

  52. Yandle T, Richards A, Gilbert A, Fisher S, Holmes S, Espiner E. Assay of brain natriuretic peptide (BNP) in human plasma: evidence for high molecular weight BNP as a major plasma component in heart failure. J Clin Endocrinol Metab. 1993;76(4):832–8.

    CAS  PubMed  Google Scholar 

  53. Wolf M, Juncker D, Michel B, Hunziker P, Delamarche E. Simultaneous detection of C-reactive protein and other cardiac markers in human plasma using micromosaic immunoassays and self-regulating microfluidic networks. Biosens Bioelectron. 2004;19(10):1193–202.

    Article  CAS  PubMed  Google Scholar 

  54. Clerico A, Zaninotto M, Prontera C, Giovannini S, Ndreu R, Franzini M, et al. State of the art of BNP and NT-proBNP immunoassays: the CardioOrmoCheck study. Clin Chim Acta CLIN CHIM ACTA. 2012;414:112–9.

    Article  CAS  PubMed  Google Scholar 

  55. Hawkridge AM, Heublein DM, Bergen HR, Cataliotti A, Burnett JC, Muddiman DC. Quantitative mass spectral evidence for the absence of circulating brain natriuretic peptide (BNP-32) in severe human heart failure. Proc Natl Acad Sci. 2005;102(48):17442–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Collings A, Caruso F. Biosensors: recent advances. Rep Prog Phys. 1997;60(11):1397.

    Article  CAS  Google Scholar 

  57. Wang J, Honga B, Kaib J, Hanb J, Zoub Z, Ahnb CH, et al. Mini sensing chip for point-of-care acute myocardial infarction diagnosis utilizing micro-electro-mechanical system and nano-technology. Oxygen Transport to Tissue XXX: Springer; 2009. p. 101–7.

  58. Reach G, Wilson GS. Can continuous glucose monitoring be used for the treatment of diabetes. Anal Chem. 1992;64(6):381A–6A.

    CAS  PubMed  Google Scholar 

  59. Ma H, Shieh K-J. ELISA Technique. Nat Sci. 2006;4(2):36–7.

    Google Scholar 

  60. Leung A, Shankar PM, Mutharasan R. A review of fiber-optic biosensors. Sens Actuators B Chem. 2007;125(2):688–703.

    Article  CAS  Google Scholar 

  61. Vaddiraju S, Tomazos I, Burgess DJ, Jain FC, Papadimitrakopoulos F. Emerging synergy between nanotechnology and implantable biosensors: a review. Biosens Bioelectron. 2010;25(7):1553–65.

    Article  CAS  PubMed  Google Scholar 

  62. Matsuura H, Sato Y, Niwa O, Mizutani F. Electrochemical enzyme immunoassay of a peptide hormone at picomolar levels. Anal Chem. 2005;77(13):4235–40.

    Article  CAS  PubMed  Google Scholar 

  63. Grabowska I, Sharma N, Vasilescu A, Iancu M, Badea G, Boukherroub R, et al. Electrochemical aptamer-based biosensors for the detection of cardiac biomarkers. ACS Omega. 2018;3(9):12010–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhuo Y, Yi W-J, Lian W-B, Yuan R, Chai Y-Q, Chen A, et al. Ultrasensitive electrochemical strategy for NT-proBNP detection with gold nanochains and horseradish peroxidase complex amplification. Biosens Bioelectron. 2011;26(5):2188–93.

    Article  CAS  PubMed  Google Scholar 

  65. Selvam AP, Prasad S. Nanosensor electrical immunoassay for quantitative detection of NT-pro brain natriuretic peptide. Futur Cardiol. 2013;9(1):137–47.

    Article  Google Scholar 

  66. Liu P, Huang J, Sanchez DVP, Schwartzman D, Lee SH, Yun M. High yield two-dimensional (2-D) polyaniline layer and its application in detection of B-type natriuretic peptide in human serum. Sens Actuators B Chem. 2016;230:184–90.

    Article  CAS  Google Scholar 

  67. Li X, Liu L, Dong X, Zhao G, Li Y, Miao J, et al. Dual mode competitive electrochemical immunoassay for B-type natriuretic peptide based on GS/SnO 2 /polyaniline-au and ZnCo 2 O 4 /N-CNTs. Biosens Bioelectron. 2019;126:448–54.

    Article  CAS  PubMed  Google Scholar 

  68. Li Z, Ausri IR, Zilberman Y, Tang XS. Towards label-free, wash-free and quantitative B-type natriuretic peptide detection for heart failure diagnosis. Nanoscale. 2019;11(39):18347–57.

    Article  CAS  PubMed  Google Scholar 

  69. Prasad S, Selvam AP, Reddy RK, Love A. Silicon nanosensor for diagnosis of cardiovascular proteomic markers. J Lab Autom. 2013;18(2):143–51.

    Article  CAS  PubMed  Google Scholar 

  70. Lei YM, Xiao MM, Li YT, Xu L, Zhang H, Zhang ZY, et al. Detection of heart failure-related biomarker in whole blood with graphene field effect transistor biosensor. Biosens Bioelectron. 2017;91:1–7.

    Article  CAS  PubMed  Google Scholar 

  71. Li Y, Wang Y, Zhang N, Fan D, Liu L, Yan T, et al. Magnetic electrode-based electrochemical immunosensor using amorphous bimetallic sulfides of CoSnS x as signal amplifier for the NT–pro BNP detection. Biosens Bioelectron. 2019;131:250–6.

    Article  CAS  PubMed  Google Scholar 

  72. Zhao J, Zhu ZZ, Huang X, Hu X, Chen H. Magnetic gold nanocomposite and aptamer assisted triple recognition electrochemical immunoassay for determination of brain natriuretic peptide. Microchim Acta. 2020;187(4):1–8.

    Article  Google Scholar 

  73. Lin CY, Tsai SH, Tai DF. Detection of oxytocin, atrial natriuretic peptide, and brain natriuretic peptide using novel imprinted polymers produced with amphiphilic monomers. J Pept Sci. 2019;25(3):e3150.

    Article  PubMed  Google Scholar 

  74. Serafín V, Torrente-Rodríguez RM, González-Cortés A, García de Frutos P, Sabaté M, Campuzano S, et al. An electrochemical immunosensor for brain natriuretic peptide prepared with screen-printed carbon electrodes nanostructured with gold nanoparticles grafted through aryl diazonium salt chemistry. Talanta. 2018;179:131–8.

    Article  PubMed  Google Scholar 

  75. Maeng BH, Choi J, Sa YS, Shin JH, Kim YH. Functional expression of recombinant anti-BNP scFv in methylotrophic yeast Pichia pastoris and application as a recognition molecule in electrochemical sensors. World J Microbiol Biotechnol. 2012;28(3):1027–34.

    Article  CAS  PubMed  Google Scholar 

  76. Shanmugam NR, Muthukumar S, Tanak AS, Prasad S. Multiplexed electrochemical detection of three cardiac biomarkers cTnI, cTnT and BNP using nanostructured ZnO-sensing platform. Futur Cardiol. 2018;14(2):131–41.

    Article  CAS  Google Scholar 

  77. de Ávila BE-F, Escamilla-Gómez V, Campuzano S, Pedrero M, Pingarrón JM. Disposable amperometric magnetoimmunosensor for the sensitive detection of the cardiac biomarker amino-terminal pro-B-type natriuretic peptide in human serum. Anal Chim Acta. 2013;784:18–24.

    Article  PubMed  Google Scholar 

  78. Liu Q, Aroonyadet N, Song Y, Wang X, Cao X, Liu Y, et al. Highly sensitive and quick detection of acute myocardial infarction biomarkers using In2O3 nanoribbon biosensors fabricated using shadow masks. ACS Nano. 2016;10(11):10117–25.

    Article  CAS  PubMed  Google Scholar 

  79. Shabarni G, Wahyuni HY, Rini S, Toto S. Recombinant anti BNP-SCFV production in Escherichia coli and its application for the detection of heart failure by electrochemical immunosensor using Screen-Printed Carbon Electrode-Gold Nanoparticles (SPCE-GNP). Res J Chem Environ. 2018;22(Special issue II):102–7.

  80. Fan D, Bao C, Liu X, Wu D, Zhang Y, Wang H, et al. A novel label-free photoelectrochemical immunosensor based on NCQDs and bi2S3 co-sensitized hierarchical mesoporous SnO 2 microflowers for detection of NT-proBNP. J Mater Chem B. 2018;6(46):7634–42.

    Article  CAS  PubMed  Google Scholar 

  81. Xu R, Lu P, Wu B, Wang X, Pang X, Du B, et al. Using SiO2/PDA-ag NPs to dual-inhibited photoelectrochemical activity of CeO2-CdS composites fabricated a novel immunosensor for BNP ultrasensitive detection. Sens Actuators B Chem. 2018;274:349–55.

    Article  CAS  Google Scholar 

  82. Qian Y, Feng J, Fan D, Zhang Y, Kuang X, Wang H, et al. A sandwich-type photoelectrochemical immunosensor for NT-pro BNP detection based on F-bi 2 WO 6 /ag 2 S and GO/PDA for signal amplification. Biosens Bioelectron. 2019;131:299–306.

    Article  CAS  PubMed  Google Scholar 

  83. Sarangadharan I, Wang S-L, Tai T-Y, Pulikkathodi AK, Hsu C-P, Chiang H-HK, et al. Risk stratification of heart failure from one drop of blood using hand-held biosensor for BNP detection. Biosens Bioelectron. 2018;107:259–65.

    Article  CAS  PubMed  Google Scholar 

  84. Zhuo Y, Han J, Tang L, Liao N, Gui G-F, Chai Y-Q, et al. Quenching of the emission of peroxydisulfate system by ferrocene functionalized chitosan nanoparticles: a sensitive “signal off” electrochemiluminescence immunosensor. Sens Actuators B Chem. 2014;192:791–5.

    Article  CAS  Google Scholar 

  85. Xiong CY, Wang HJ, Liang WB, Yuan YL, Yuan R, Chai YQ. Luminescence-functionalized metal–organic frameworks based on a ruthenium (II) complex: a signal amplification strategy for Electrogenerated Chemiluminescence Immunosensors. Chem Eur J. 2015;21(27):9825–32.

    Article  CAS  PubMed  Google Scholar 

  86. Wang C, Zhu W, Yan T, Yang L, Kuang X, Du B, et al. Novel electrochemiluminescent platform based on gold nanoparticles functionalized Ti doped BiOBr for ultrasensitive immunosensing of NT-proBNP. Sens Actuators B Chem. 2018;277:401–7.

    Article  CAS  Google Scholar 

  87. Shi L, Li X, Zhu W, Wang Y, Du B, Cao W, et al. Sandwich-type electrochemiluminescence sensor for detection of NT-proBNP by using high efficiency quench strategy of Fe3O4@ PDA toward Ru (bpy) 32+ coordinated with silver oxalate. ACS sensors. 2017;2(12):1774–8.

    Article  CAS  PubMed  Google Scholar 

  88. Ali A, Xing B, Khan MS, Ma N, Manzoor R, Wu D, et al. Electrochemiluminescence behaviour of m-CNNS quenched by CeO2@PDA composites for sensitive detection of BNP. J Electroanal Chem. 2020;862:113970.

    Article  CAS  Google Scholar 

  89. Zhao J, Du J, Luo J, Chen S, Yuan R. A novel potential-resolved electrochemiluminescence immunosensor for the simultaneous determination of brain natriuretic peptide and cardiac troponin I. Sens Actuators B Chem. 2020;311:127934.

    Article  CAS  Google Scholar 

  90. Tu A, Shang J, Wang Y, Li D, Liu L, Gan Z, et al. Detection of B-type natriuretic peptide by establishing a low-cost and replicable fluorescence resonance energy transfer platform. Microchim Acta. 2020;187(6):1–9.

    Article  Google Scholar 

  91. Ji J, Lu W, Zhu Y, Jin H, Yao Y, Zhang H, et al. Porous hydrogel-encapsulated photonic barcodes for multiplex detection of cardiovascular biomarkers. ACS sensors. 2019;4(5):1384–90.

    Article  CAS  PubMed  Google Scholar 

  92. Pu Q, Yang X, Guo Y, Dai T, Yang T, Ou X, et al. Simultaneous colorimetric determination of acute myocardial infarction biomarkers by integrating self-assembled 3D gold nanovesicles into a multiple immunosorbent assay. Microchim Acta. 2019;186(3):138.

    Article  Google Scholar 

  93. Tang L, Ren Y, Hong B, Kang KA. Fluorophore-mediated, fiber-optic, multi-analyte, immunosensing system for rapid diagnosis and prognosis of cardiovascular diseases. J Biomed Opt. 2006;11(2):021011.

    Article  PubMed  Google Scholar 

  94. Luo B, Wu S, Zhang Z, Zou W, Shi S, Zhao M, et al. Human heart failure biomarker immunosensor based on excessively tilted fiber gratings. Biomed Opt Express. 2017;8(1):57–67.

    Article  CAS  PubMed  Google Scholar 

  95. Kurita R, Hirata Y, Yabuki S, Yokota Y, Kato D, Sato Y, et al. Surface modification of thin polyion complex film for surface plasmon resonance immunosensor. Sens Actuators B Chem. 2008;130(1):320–5.

    Article  CAS  Google Scholar 

  96. Jang HR, Wark AW, Baek SH, Chung BH, Lee HJ. Ultrasensitive and ultrawide range detection of a cardiac biomarker on a surface plasmon resonance platform. Anal Chem. 2014;86(1):814–9.

    Article  CAS  PubMed  Google Scholar 

  97. Zhao J, Liang D, Gao S, Hu X, Koh K, Chen H. Analyte-resolved magnetoplasmonic nanocomposite to enhance SPR signals and dual recognition strategy for detection of BNP in serum samples. Biosens Bioelectron. 2019;141.

  98. Zhu Z, Li H, Xiang Y, Koh K, Hu X, Chen H. Pyridinium porphyrins and AuNPs mediated bionetworks as SPR signal amplification tags for the ultrasensitive assay of brain natriuretic peptide. Microchim Acta. 2020;187(6):1–9.

    Article  Google Scholar 

  99. Yang X, Liu L, Hao Q, Zou D, Zhang X, Zhang L, et al. Development and evaluation of up-converting phosphor technology-based lateral flow assay for quantitative detection of NT-proBNP in blood. PLoS One. 2017;12(2):e0171376.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Wilkins MD, Turner BL, Rivera KR, Menegatti S, Daniele M. Quantum dot enabled lateral flow immunoassay for detection of cardiac biomarker NT-proBNP. Sensing and Bio-Sensing Research. 2018;21:46–53.

    Article  Google Scholar 

  101. Yang D, Ma J, Xue C, Wang L, Wang X. One-pot synthesis of poly (acrylic acid)-stabilized Fe3O4 nanocrystal clusters for the simultaneously qualitative and quantitative detection of biomarkers in lateral flow immunoassay. J Pharm Biomed Anal. 2018;159:119–26.

    Article  CAS  PubMed  Google Scholar 

  102. Kurita R, Yokota Y, Sato Y, Mizutani F, Niwa O. On-chip enzyme immunoassay of a cardiac marker using a microfluidic device combined with a portable surface plasmon resonance system. Anal Chem. 2006;78(15):5525–31.

    Article  CAS  PubMed  Google Scholar 

  103. Lee I, Luo X, Huang J, Cui XT, Yun M. Detection of cardiac biomarkers using single polyaniline nanowire-based conductometric biosensors. Biosensors. 2012;2(2):205–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Fellner S, Hentze S, Kempin U, Richter E, Rocktäschel J, Langer B. Analytical evaluation of a BNP assay on the new point-of-care platform respons®IQ. Pract Lab Med. 2015;2:15–21.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Li Y, Xuan J, Song Y, Wang P, Qin L. A microfluidic platform with digital readout and ultra-low detection limit for quantitative point-of-care diagnostics. Lab Chip. 2015;15(16):3300–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Liu P, Zhu Y, Lee SH, Yun M. Two-dimensional polyaniline nanostructure to the development of microfluidic integrated flexible biosensors for biomarker detection. Biomed Microdevices. 2016;18(6).

  107. Zheng Y, Huang Z, Zhang J. Paper-based microfluidic immunoassay for electrochemical detection of B-type natriuretic peptide. Int J Electrochem Sci. 2018;13(7):7246–54.

    Article  CAS  Google Scholar 

  108. Park J, Sunkara V, Kim T-H, Hwang H, Cho Y-K. Lab-on-a-disc for fully integrated multiplex immunoassays. Anal Chem. 2012;84(5):2133–40.

    Article  CAS  PubMed  Google Scholar 

  109. Sinha A, Tai T-Y, Li K-H, Gopinathan P, Chung Y-D, Sarangadharan I, et al. An integrated microfluidic system with field-effect-transistor sensor arrays for detecting multiple cardiovascular biomarkers from clinical samples. Biosens Bioelectron. 2019;129:155–63.

    Article  CAS  PubMed  Google Scholar 

  110. D ' Orazio P. Biosensors in clinical chemistry. Clin Chim Acta Clin Chim Acta. 2003;334(1–2):41–69.

    Article  CAS  Google Scholar 

  111. Wilson MS. Electrochemical immunosensors for the simultaneous detection of two tumor markers. Anal Chem. 2005;77(5):1496–502.

    Article  CAS  PubMed  Google Scholar 

  112. Grieshaber D, MacKenzie R, Voeroes J, Reimhult E. Electrochemical biosensors-sensor principles and architectures. Sensors. 2008;8(3):1400–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Khan FH. Chapter 25 - antibodies and their applications. In: Verma AS, Singh A, editors. Animal biotechnology. San Diego: Academic Press; 2014. p. 473–90.

    Chapter  Google Scholar 

  114. Kirchartz T, Gong W, Hawks SA, Agostinelli T, MacKenzie RC, Yang Y, et al. Sensitivity of the Mott–Schottky analysis in organic solar cells. J Phys Chem C. 2012;116(14):7672–80.

    Article  CAS  Google Scholar 

  115. Mohammadinejad A, Oskuee RK, Eivazzadeh-Keihan R, Rezayi M, Baradaran B, Maleki A, et al. Development of biosensors for detection of alpha-fetoprotein: as a major biomarker for hepatocellular carcinoma. Trends Anal Chem. 2020;115961.

  116. Shen J, Zhou T, Huang R. Recent advances in electrochemiluminescence sensors for pathogenic bacteria detection. Micromachines. 2019;10(8):532.

    Article  PubMed Central  Google Scholar 

  117. Li X, Zhang Y, Xue B, Kong X, Liu X, Tu L, et al. A SERS nano-tag-based fiber-optic strategy for in situ immunoassay in unprocessed whole blood. Biosens Bioelectron. 2017;92:517–22.

    Article  CAS  PubMed  Google Scholar 

  118. Yang B, Shi L, Lei J, Li B, Jin Y. Advances in optical assays for detecting telomerase activity. J Lumin. 2019;34(2):136–52.

    Article  CAS  Google Scholar 

  119. Jonsson MP, Dahlin AB, Jönsson P, Höök F. Nanoplasmonic biosensing with focus on short-range ordered nanoholes in thin metal films. Biointerphases. 2008;3(3):FD30–40.

    Article  PubMed  Google Scholar 

  120. Sinha A, Gopinathan P, Chung Y-D, Lin H-Y, Li K-H, Ma H-P, et al. An integrated microfluidic platform to perform uninterrupted SELEX cycles to screen affinity reagents specific to cardiovascular biomarkers. Biosens Bioelectron. 2018;122:104–12.

    Article  CAS  PubMed  Google Scholar 

  121. Chang K-W, Li J, Yang C-H, Shiesh S-C, Lee G-B. An integrated microfluidic system for measurement of glycated hemoglobin levels by using an aptamer–antibody assay on magnetic beads. Biosens Bioelectron. 2015;68:397–403.

    Article  CAS  PubMed  Google Scholar 

  122. Mannarino S, Garofoli F, Mongini E, Cerbo RM, Codazzi AC, Tzialla C, et al. BNP concentrations and cardiovascular adaptation in preterm and fullterm newborn infants. Early Hum Dev. 2010;86(5):295–8.

    Article  CAS  PubMed  Google Scholar 

  123. Wang P, Jin B, Xing Y, Cheng Z, Ge Y, Zhang H, et al. Rolling circle amplification immunoassay combined with gold nanoparticle aggregates for colorimetric detection of protein. J Nanosci Nanotechnol. 2014;14(8):5662–8.

    Article  CAS  PubMed  Google Scholar 

  124. Walsh R, DeRosa MC. Retention of function in the DNA homolog of the RNA dopamine aptamer. Biochem Biophys Res Commun. 2009;388(4):732–5.

    Article  CAS  PubMed  Google Scholar 

  125. Rahmati Z, Roushani M, Hosseini H. Three-dimensional NiCo2O4 nanowires encapsulated in nitrogen-doped carbon networks as a high-performance aptamer stabilizer for impedimetric ultrasensitive detection of hepatitis C virus core antigen. Surf Interfaces. 2021;22:100813.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the University of Medical Sciences, Mashhad, Iran, for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Rezayi.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest regarding this study.

Ethics approval

Not applicable.

Source of biological material

Not applicable.

Statement on animal welfare

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gachpazan, M., Mohammadinejad, A., Saeidinia, A. et al. A review of biosensors for the detection of B-type natriuretic peptide as an important cardiovascular biomarker. Anal Bioanal Chem 413, 5949–5967 (2021). https://doi.org/10.1007/s00216-021-03490-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-021-03490-6

Keywords

Navigation