Skip to main content
Log in

Helium-assisted enhanced discharge in a hollow needle for high-field asymmetric ion mobility spectrometry (FAIMS)

  • Communication
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A carrier gas mixture of nitrogen and helium has been employed to improve the resolving power at the expense of sensitivity for planar high-field asymmetric ion mobility spectrometry (FAIMS) in previous work. In this paper, a new hollow needle-to-ring ion source was developed, where the helium and nitrogen enter from the hollow needle and ring, respectively. It was found that the signal strengths of acetone, ethanol, and ethyl acetate increased by 8.5, 2.0, and 3.3 times for helium ratios of 20%, 20%, and 10%, respectively. At the same time, the absolute value of compensation voltage and the number of ion peaks increases. It shows that adding an appropriate helium ratio to nitrogen simultaneously improved the sensitivity and resolving power of planar FAIMS, which is reported for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Buryakov IA, Krylov EV, Nazarov EG, Rasulev UK. A new method of separation of multi-atomic ions by mobility at atmospheric pressure using a high-frequency amplitude-asymmetric strong electric field. Int J Mass Spectrom. 1993;128(3):143–8.

    Article  CAS  Google Scholar 

  2. Miller RA, Nazarov EG, Eiceman GA, King AT. A MEMS radio-frequency ion mobility spectrometer for chemical vapor detection. Sensors Actuators A Phys. 2001;91(3):301–12.

    Article  CAS  Google Scholar 

  3. Eiceman GA, Nazarov EG, Tadjikov B, Miller RA. Monitoring volatile organic compounds in ambient air inside and outside buildings with the use of a radio-frequency-based ion-mobility analyzer with a micromachined drift tube. Field Anal Chem Technol. 2000;4(6):297–308.

    Article  CAS  Google Scholar 

  4. Arasaradnam RP, Mcfarlane M, Daulton E, et al. Non-invasive exhaled volatile organic biomarker analysis to detect inflammatory bowel disease (IBD). Dig Liver Dis. 2016;48(2):148–53.

    Article  CAS  Google Scholar 

  5. Isenberg SL, Armistead PM, Glish GL. Optimization of peptide separations by differential ion mobility spectrometry. J Am Soc Mass Spectrom. 2014;25(9):1592–9.

    Article  CAS  Google Scholar 

  6. Tong S, Jiao H, Shenyi Q, Yangting Z, Kun Z, Jing L. Collaborative detection for wound infections using electronic nose and FAIMS technology based on a rat wound model. Sensors Actuators B Chem. 2020;320:128595.

    Article  Google Scholar 

  7. Shvartsburg AA, Danielson WF, Smith RD. High-resolution differential ion mobility separations using helium-rich gases. Anal Chem. 2010;82:2456–62.

    Article  CAS  Google Scholar 

  8. Brandon GS, Rachel AH, Samantha LI, et al. Improved differential ion mobility separations using linked scans of carrier gas composition and compensation field. J Am Soc Mass Spectrom. 2015;26(10):1746–53.

    Article  Google Scholar 

  9. Shvartsburg AA, Tang K, Smith RD. Differential ion mobility separations of peptides with resolving power exceeding 50. Anal Chem. 2010;82(1):32–5.

    Article  CAS  Google Scholar 

  10. Shvartsburg AA, Tang K, Smith RD. Understanding and designing field asymmetric waveform ion mobility spectrometry separations in gas mixtures. Anal Chem. 2004;76:7366–74.

    Article  CAS  Google Scholar 

  11. Shvartsburg AA, Prior DC, Tang K, Smith RD. High-resolution differential ion mobility separations using planar analyzers at elevated dispersion fields. Anal Chem. 2010;82(18):7649–55.

    Article  CAS  Google Scholar 

  12. Shvartsburg AA, Ibrahim YM, Smith RD. Differential ion mobility separations in up to 100% helium using microchips. J Am Soc Mass Spectrom. 2014;25(11):480–9.

    Article  CAS  Google Scholar 

  13. Andriy K, Carsten E, Florian U, Klaus K, Robert M, Ursula T. Low-temperature plasma ionization differential ion mobility spectrometry. Anal Chem. 2015;87(17):8932–40.

    Article  Google Scholar 

  14. Xiaoxia D, Jiahao M, Hongda Z, Ruosheng Z, Yongrong J, Li H. Printed circuit board (PCB) brazing and ion source integration of a high-field asymmetric ion mobility spectrometry (FAIMS) chip. Anal Lett. 2020;11:1–12.

    Google Scholar 

  15. Krylova N, Krylov E, Eiceman GA, Stone JA. Effect of moisture on the field dependence of mobility for gas-phase ions of organophosphorus compounds at atmospheric pressure with field asymmetric ion mobility spectrometry. J Phys Chem. 2003;107(19):3648–54.

    Article  CAS  Google Scholar 

  16. Cody RB, Laramee JA, Durst HD. Versatile new ion source for the analysis of materials in open air under ambient conditions. Anal Chem. 2005;77(8):2297–302.

    Article  CAS  Google Scholar 

  17. Andrade FJ, Shelley JT, Wetzel WC, Webb MR, Gamez G, Ray SJ, Hieftje GM. Atmospheric pressure chemical ionization source. 1. Ionization of compounds in the gas phase. Anal. Chem.2008; 80(8): 2646–2653.

  18. Dzidic I, Carroll DI, Stillwell RN, Horning EC. Comparison of positive ions formed in nickel-63 and corona discharge ion sources using nitrogen, argon, isobutane, ammonia and nitric oxide as reagents in atmospheric pressure ionization mass spectrometry. Anal Chem. 1976;48(12):1763–8.

    Article  CAS  Google Scholar 

  19. Horning EC, Carroll DI, Dzidic I, Haegele KD, Horning MG, Stillwell RN. Atmospheric pressure ionization (API) mass spectrometry. Solvent-mediated ionization of samples introduced in solution and in a liquid chromatograph effluent stream. J Chromatogr Sci. 1974;12(11):725–9.

    Article  CAS  Google Scholar 

  20. Kambara H, Mitsui Y, Kanomata I. Identification of clusters produced in an atmospheric pressure ionization process by a collisional dissociation method. Anal Chem. 1979;51(9):1447–52.

    Article  CAS  Google Scholar 

  21. Krylov EV, Nazarov EG, Miller RA. Differential mobility spectrometer: model of operation. J Mass Spectrom. 2007;266(1–3):76–85.

    Article  CAS  Google Scholar 

  22. McDaniel EW, Mason EA. Transport properties of ions in gases. NASA STI/Recon Technical Report A. 1988.

  23. Shvartsburg AA, Smith RD, Wilks A, Koehl A, Ruiz-Alonso D, Boyle B. Ultrafast differential ion mobility spectrometry at extreme electric fields in multichannel microchips. Anal Chem. 2009;81(15):6489–95.

    Article  CAS  Google Scholar 

  24. Yue Z, Fei T, Yadong Z, Xiaohao W. Performance enhancement of high-field asymmetric waveform ion mobility spectrometry by applying differential-RF-driven operation mode. Rev Sci Instrum. 2017;88(9):95–113.

    Google Scholar 

  25. Guevremont R. High-field asymmetric waveform ion mobility spectrometry: a new tool for mass spectrometry. J Chromatogr A. 2004;1058(1–2):3–19.

    Article  CAS  Google Scholar 

  26. Chavarria MA, Matheoud AV, Marmillod P. High sensitivity field asymmetric ion mobility spectrometer. Rev Sci Instrum. 2017;88(3):35–115.

    Article  Google Scholar 

Download references

Funding

This work was partially supported by the National Natural Science Foundation of China under Grant Numbers 61864001 and 61761013; the Natural Science Foundation of GuangXi Province under Grant Number 2017GXNSFAA198256; and the Foundation of Guangxi Key Laboratory of Automatic Detecting Technology and Instruments (Guilin University of Electronic Technology) under Grant Number YQ18113.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hua Li or Wenxiang Xiao.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Du, X., Zeng, H. et al. Helium-assisted enhanced discharge in a hollow needle for high-field asymmetric ion mobility spectrometry (FAIMS). Anal Bioanal Chem 413, 2855–2866 (2021). https://doi.org/10.1007/s00216-021-03250-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-021-03250-6

Keywords

Navigation