Skip to main content
Log in

Paper spray ionization–high-resolution mass spectrometry (PSI-HRMS) of peroxide explosives in biological matrices

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Mitigation of the peroxide explosive threat, specifically triacetone triperoxide (TATP) and hexamethylene triperoxide diamine (HMTD), is a priority among the law enforcement community, as scientists and canine (K9) units are constantly working to improve detection. We propose the use of paper spray ionization–high-resolution mass spectrometry (PSI-HRMS) for detection of peroxide explosives in biological matrices. Occurrence of peroxide explosives and/or their metabolites in biological samples, obtained from urine or blood tests, give scientific evidence of peroxide explosives exposure. PSI-HRMS promote analysis of samples in situ by eliminating laborious sample preparation steps. However, it increases matrix background issues, which were overcome by the formation of multiple alkali metal adducts with the peroxide explosives. Multiple ion formation increases confidence when identifying these peroxide explosives in direct sample analysis. Our previous work examined aspects of TATP metabolism. Herein, we investigate the excretion of a TATP glucuronide conjugate in the urine of bomb-sniffing dogs and demonstrate its detection using PSI from the in vivo sample.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Oxley JC, Smith JL, Bowden PR, Rettinger RC. Factors influencing triacetone triperoxide (TATP) and diacetone diperoxide (DADP) formation: part I. Propellants, Explos., Pyrotech. 2013;38(2):244–254. doi:https://doi.org/10.1002/prep.201200116.

  2. Oxley JC, Smith JL, Porter M, McLennan L, Colizza K, Zeiri Y, et al. Synthesis and degradation of hexamethylene triperoxide diamine (HMTD). Propellants Explos Pyrotech. 2016;41(2):334–50. https://doi.org/10.1002/prep.201500151.

    Article  CAS  Google Scholar 

  3. Oxley JC, Smith JL, Chen H. Decomposition of a multi-peroxidic compound: triacetone triperoxide (TATP). Propellants Explos., Pyrotech. 2002;27(4):209–16. https://doi.org/10.1002/1521-4087(200209)27:4<209::AID-PREP209>3.0.CO;2-J.

  4. Oxley JC, Smith JL, Chen H, Cioffi E. Decomposition of multi-peroxidic compounds: part II. Hexamethylene triperoxide diamine (HMTD). Thermochim. Acta. 2002;388(1):215–225. doi: https://doi.org/10.1016/S0040-6031(02)00028-X.

  5. Oxley JC, Smith JL, Canino JN. Insensitive TATP training aid by microencapsulation. J Energ Mater. 2015;33(3):215–28. https://doi.org/10.1080/07370652.2014.985857.

    Article  CAS  Google Scholar 

  6. Security DoH. System assessment and validation for emergency responders (SAVER)2006.

  7. Oxley JC, Smith JL, Kirschenbaum LJ, Shinde KP, Marimganti S. Accumulation of explosives in hair. J Forensic Sci. 2005;50(4):826–31.

    Article  CAS  Google Scholar 

  8. Parkinson A, Ogilvie BW, Buckley DB, Kazmi F, Parkinson O. Biotransformation of xenobiotics. In: Klaassen CD, editor. Casarett & Doull’s toxicology: the basic science of poisons. 9th ed. New York, NY: McGraw-Hill Education; 2019.

    Google Scholar 

  9. Gonsalves MD, Colizza K, Smith JL, Oxley JC. In vitro and in vivo studies of triacetone triperoxide (TATP) metabolism in humans. Forensic Toxicol. 2021;39(1):59–72. https://doi.org/10.1007/s11419-020-00540-z.

    Article  CAS  Google Scholar 

  10. Goulard H. Belgion breakthrough to help ID terror suspects: report. 2016. https://www.politico.eu/article/belgian-breakthrough-to-help-id-terror-suspects-report/. Accessed 11 January 2021.

  11. Krawczyk T. Enhanced electrospray ionization mass spectrometric detection of hexamethylene triperoxide diamine (HMTD) after oxidation to tetramethylene diperoxide diamine dialdehyde (TMDDD). Rapid Commun Mass Spectrom. 2015;29(23):2257–62. https://doi.org/10.1002/rcm.7385.

    Article  CAS  PubMed  Google Scholar 

  12. Cotte-Rodríguez I, Chen H, Cooks RG. Rapid trace detection of triacetone triperoxide (TATP) by complexation reactions during desorption electrospray ionization. ChemComm. 2006;9:953–5. https://doi.org/10.1039/B515122H.

    Article  Google Scholar 

  13. Oxley J, Smith J, Brady J, Dubnikova F, Kosloff R, Zeiri L, et al. Raman and infrared fingerprint spectroscopy of peroxide-based explosives. Appl Spectrosc. 2008;62(8):906–15. https://doi.org/10.1366/000370208785284420.

    Article  CAS  PubMed  Google Scholar 

  14. Steinkamp FL, DeGreeff LE, Collins GE, Rose-Pehrsson SL. Factors affecting the intramolecular decomposition of hexamethylene triperoxide diamine and implications for detection. J Chromatogr A. 2016;1451:83–90. https://doi.org/10.1016/j.chroma.2016.05.013.

    Article  CAS  PubMed  Google Scholar 

  15. Forbes TP, Sisco E. Recent advances in ambient mass spectrometry of trace explosives. Analyst. 2018;143(9):1948–69. https://doi.org/10.1039/C7AN02066J.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Brown KE, Greenfield MT, McGrane SD, Moore DS. Advances in explosives analysis—part I: animal, chemical, ion, and mechanical methods. Anal Bioanal Chem. 2016;408(1):35–47. https://doi.org/10.1007/s00216-015-9040-4.

    Article  CAS  PubMed  Google Scholar 

  17. Yang Q, Wang H, Maas JD, Chappell WJ, Manicke NE, Cooks RG, et al. Paper spray ionization devices for direct, biomedical analysis using mass spectrometry. Int J Mass Spectrom. 2012;312:201–7. https://doi.org/10.1016/j.ijms.2011.05.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang H, Ren Y, McLuckey MN, Manicke NE, Park J, Zheng L, et al. Direct quantitative analysis of nicotine alkaloids from biofluid samples using paper spray mass spectrometry. Anal Chem. 2013;85(23):11540–4. https://doi.org/10.1021/ac402798m.

    Article  CAS  PubMed  Google Scholar 

  19. Takáts Z, Wiseman JM, Gologan B, Cooks RG. Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science. 2004;306(5695):471. https://doi.org/10.1126/science.1104404.

    Article  CAS  PubMed  Google Scholar 

  20. Cody RB, Laramee JA, Nilles JM, Durst HD. Direct analysis in real time (DART) mass spectrometry. JEOL News. 2005:1–5.

  21. Liu J, Wang H, Manicke NE, Lin J-M, Cooks RG, Ouyang Z. Development, characterization, and application of paper spray ionization. Anal Chem. 2010;82(6):2463–71. https://doi.org/10.1021/ac902854g.

    Article  CAS  PubMed  Google Scholar 

  22. Wang H, Liu J, Cooks RG, Ouyang Z. Paper spray for direct analysis of complex mixtures using mass spectrometry. Angew Chem Int. 2010;49(5):877–80. https://doi.org/10.1002/anie.200906314.

    Article  CAS  Google Scholar 

  23. Manicke NE, Yang Q, Wang H, Oradu S, Ouyang Z, Cooks RG. Assessment of paper spray ionization for quantitation of pharmaceuticals in blood spots. Int J Mass Spectrom. 2011;300(2):123–9. https://doi.org/10.1016/j.ijms.2010.06.037.

    Article  CAS  Google Scholar 

  24. Michely JA, Meyer MR, Maurer HH. Paper spray ionization coupled to high resolution tandem mass spectrometry for comprehensive urine drug testing in comparison to liquid chromatography-coupled techniques after urine precipitation or dried urine spot workup. Anal Chem. 2017;89(21):11779–86. https://doi.org/10.1021/acs.analchem.7b03398.

    Article  CAS  PubMed  Google Scholar 

  25. Costa C, van Es EM, Sears P, Bunch J, Palitsin V, Mosegaard K, et al. Exploring rapid, sensitive and reliable detection of trace explosives using paper spray mass spectrometry (PS-MS). Propellants Explos. Pyrotech. 2019;44(8):1021–7. https://doi.org/10.1002/prep.201800320.

    Article  CAS  Google Scholar 

  26. Tsai C-W, Tipple CA, Yost RA. Integration of paper spray ionization high-field asymmetric waveform ion mobility spectrometry for forensic applications. Rapid Commun Mass Spectrom. 2018;32(7):552–60. https://doi.org/10.1002/rcm.8068.

    Article  CAS  PubMed  Google Scholar 

  27. Tsai C-W, Tipple CA, Yost RA. Application of paper spray ionization for explosives analysis. Rapid Commun Mass Spectrom. 2017;31(19):1565–72. https://doi.org/10.1002/rcm.7932.

    Article  CAS  PubMed  Google Scholar 

  28. Wierzbicki A, Cioffi E. Density functional theory studies of hexamethylene triperoxide diamine. J Phys Chem A. 1999;103(44):8890–4. https://doi.org/10.1021/jp992040z.

    Article  CAS  Google Scholar 

  29. Nielsen AT, Moore DW, Ogan MD, Atkins RL. Structure and chemistry of the aldehyde ammonias. 3. Formaldehyde-ammonia reaction. 1,3,5-hexahydrotriazine. J Org Chem. 1979;44(10):1678–84. https://doi.org/10.1021/jo01324a021.

    Article  CAS  Google Scholar 

  30. Sim J, Choi E, Jeong G-S, Lee S. Characterization of in vitro metabolites of cudratricusxanthone A in human liver microsomes. Biopharm Drug Dispos. 2015;36(5):325–36. https://doi.org/10.1002/bdd.1943.

    Article  CAS  PubMed  Google Scholar 

  31. Schebb NH, Franze B, Maul R, Ranganathan A, Hammock BD. In vitro glucuronidation of the antibacterial triclocarban and its oxidative metabolites. Drug Metab Dispos. 2012;40(1):25. https://doi.org/10.1124/dmd.111.042283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Di Marco A, Antoni M, Attaccalite S, Carotenuto P, Laufer R. Determination of drug glucuronidation and udp-glucuronosyltransferase selectivity using a 96-well radiometric assay. Drug Metab Dispos. 2005;33(6):812. https://doi.org/10.1124/dmd.105.004333.

    Article  CAS  PubMed  Google Scholar 

  33. Furton KG, Greb J, Holness H. Scientific working group on dog and orthogonal detector guidelines (SWGDOG). In: Justice USDo, editor. Rockville, MD2010. p. 155.

  34. Furton KG, Myers LJ. The scientific foundation and efficacy of the use of canines as chemical detectors for explosives1Invited paper for the special issue of Talanta ‘Methods for Explosive Analysis and Detection’.1. Talanta. 2001;54(3):487–500. doi: https://doi.org/10.1016/S0039-9140(00)00546-4.

  35. Zhou X, Cassidy KC, Hudson L, Mohutsky MA, Sawada GA, Hao J. Enterohepatic circulation of glucuronide metabolites of drugs in dog. Pharmacol Res Perspect. 2019;7(4):e00502. https://doi.org/10.1002/prp2.502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Court MH. Feline drug metabolism and disposition: pharmacokinetic evidence for species differences and molecular mechanisms. Vet. Clin. North Am. Small Anim. Pract. 2013;43(5):1039–1054. doi: https://doi.org/10.1016/j.cvsm.2013.05.002.

  37. Hill AR, Edgar M, Chatzigeorgiou M, Reynolds JC, Kelly PF, Creaser CS. Analysis of triacetone triperoxide complexes with alkali metal ions by electrospray and extractive electrospray ionisation combined with ion mobility spectrometry and mass spectrometry. Eur J Mass Spectrom. 2015;21(3):265–74. https://doi.org/10.1255/ejms.1348.

    Article  CAS  Google Scholar 

  38. Yin H, Hachey DL, Porter NA. Analysis of diacyl peroxides by Ag+ coordination ionspray tandem mass spectrometry: free radical pathways of complex decomposition. J Am Soc Mass Spectrom. 2001;12(4):449–55. https://doi.org/10.1021/jasms.8b01604.

    Article  CAS  PubMed  Google Scholar 

  39. Atomic Weights and Isotopic Compositions (version 4.1) [database on the Internet]. National Institute of Standards and Technology. 2015. Available from: http://physics.nist.gov/Comp. Accessed: 26 January 2021.

  40. Ho Y-P, Yang Y-C, Klippenstein SJ, Dunbar RC. Binding energies of Ag+ and cd+ complexes from analysis of radiative association kinetics. J Phys Chem A. 1997;101(18):3338–47. https://doi.org/10.1021/jp9637284.

    Article  CAS  Google Scholar 

  41. Oxley JC, Smith JL, Steinkamp L, Zhang G. Factors influencing triacetone triperoxide (TATP) and diacetone diperoxide (DADP) formation: part 2. Propellants Explos. Pyrotech. 2013;38(6):841–51. https://doi.org/10.1002/prep.201200215.

    Article  CAS  Google Scholar 

  42. Costa C, van Es EM, Sears P, Bunch J, Palitsin V, Cooper H, et al. Exploring a route to a selective and sensitive portable system for explosive detection– swab spray ionisation coupled to of high-field assisted waveform ion mobility spectrometry (FAIMS). Forensic Sci Int. 2019;1:214–20. https://doi.org/10.1016/j.fsisyn.2019.07.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Colizza K, Mahoney KE, Yevdokimov AV, Smith JL, Oxley JC. Acetonitrile ion suppression in atmospheric pressure ionization mass spectrometry. J Am Soc Mass Spectrom. 2016;27(11):1796–804.

    Article  CAS  Google Scholar 

  44. Kramer B, Tisdall FF, The Direct Quantitative Determination of Sodium. Potassium, calcium, and magnesium in small amounts of blood. J Biol Chem. 1921;48(1):223–32. https://doi.org/10.1016/S0021-9258(18)86058-6.

    Article  CAS  Google Scholar 

  45. Sands JM, Layton HE. The physiology of urinary concentration: an update. Semin Nephrol. 2009;29(3):178–95. https://doi.org/10.1016/j.semnephrol.2009.03.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hadland SE, Levy S. Objective testing: urine and other drug tests. Child Adolesc Psychiatr Clin N Am. 2016;25(3):549–65. https://doi.org/10.1016/j.chc.2016.02.005.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Treatment CfSA. Appendix B: urine collection and testing procedures and alternative methods for monitoring drug use. Substance abuse: clinical issues in intensive outpatient Treatment. Treatment improvement protocol (TIP) series 47. Rockville, MD: Substance Abuse and Mental Health Services Administration; 2006.

  48. Colizza K, Gonsalves M, McLennan L, Smith JL, Oxley JC. Metabolism of triacetone triperoxide (TATP) by canine cytochrome P450 2B11. Forensic Toxicol. 2019;37(1):174–85. https://doi.org/10.1007/s11419-018-0450-9.

    Article  CAS  Google Scholar 

Download references

Funding

This material is based upon work supported by US Department of Homeland Security (DHS), Science & Technology Directorate, Office of University Programs, under Grant 2013-ST-061-ED0001.Views and conclusions are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of DHS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jimmie C. Oxley.

Ethics declarations

Ethics approval

International, national, and/or institutional guidelines for the care and use of animals have been followed when conducting this study. The protocol used was reviewed and approved by the University of Rhode Island Institutional Animal Care and Use Committee (IACUC) with AN 13-05-023.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonsalves, M.D., Yevdokimov, A., Brown-Nash, A. et al. Paper spray ionization–high-resolution mass spectrometry (PSI-HRMS) of peroxide explosives in biological matrices. Anal Bioanal Chem 413, 3069–3079 (2021). https://doi.org/10.1007/s00216-021-03244-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-021-03244-4

Keywords

Navigation