Skip to main content

Advertisement

Log in

DNA immobilization and detection using DNA binding proteins

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The immobilization of sensing bioreceptors is a critical feature affecting the final performance of a biosensor. For DNA detection, the (strept)avidin-biotin affinity interaction is often used for the immobilization of biotin-labeled oligonucleotides or PCR amplicons. Herein, DNA binding proteins are proposed as alternative universal anchors for both DNA immobilization and detection, based on the strong and specific affinity interaction between certain DNA binding proteins and their respective dsDNA binding sites. These binding sites can be incorporated in the target DNA molecule during synthesis and by PCR, eliminating the need for post-synthesis chemical modification and resulting in lower costs. When scCro DNA binding protein was immobilized on microplates and nitrocellulose membrane, both ssDNA and dsDNA targets were successfully detected. The detection limits achieved were similar to those obtained with the streptavidin-biotin system. However, the scCro system resulted in higher signals while using less amount of protein. The adsorption properties of scCro were superior to streptavidin’s, making scCro a viable alternative as an anchor biomolecule for the development of DNA assays and biosensors. Finally, a nucleic acid lateral flow assay based solely on two different DNA binding proteins, scCro and dHP, was developed for the detection of a PCR amplicon. Overall, the proposed system appears to be very promising and with potential use for multiplex detection using various DNA binding proteins with different sequence specificities. Further work is required to better understand the adsorption properties of these biomolecules on nitrocellulose, optimize the assays comprehensively, and achieve improved sensitivities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CNP:

Carbon nanoparticles

dHP:

Dimeric headpiece domain of the Escherichia coli LacI repressor

ELISA:

Enzyme-linked immunosorbent assay

ELONA:

Enzyme-linked oligonucleotide assay

EMSA:

Electrophoretic mobility shift assay

LFA:

Lateral flow assay

scCro:

Single-chain bacteriophage Cro repressor

References

  1. Vigneshvar S, Sudhakumari CC, Senthilkumaran B, Prakash H. Recent advances in biosensor technology for potential applications – an overview. Front Bioeng Biotechnol. 2016;4:11.

    Article  CAS  Google Scholar 

  2. Asal M, Ozen O, Sahinler M, Polatoglu I. Recent developments in enzyme, DNA and immuno-based biosensors. Sensors. 2018;18:1924.

    Article  Google Scholar 

  3. Morales MA, Halpern JM. Guide to selecting a biorecognition element for biosensors. Bioconjug Chem. 2018;29:3231–9.

    Article  CAS  Google Scholar 

  4. Homaei AA, Sariri R, Vianello F, Stevanato R. Enzyme immobilization: an update. J Chem Biol. 2013;6:185–205.

    Article  Google Scholar 

  5. Liu Y, Yu J. Oriented immobilization of proteins on solid supports for use in biosensors and biochips: a review. Microchim Acta. 2016;183:1–19.

    Article  CAS  Google Scholar 

  6. Sassolas A, Blum LJ, Leca-Bouvier BD. Immobilization strategies to develop enzymatic biosensors. Biotechnol Adv. 2012;30:489–511.

    Article  CAS  Google Scholar 

  7. Hussack G, Luo Y, Veldhuis L, Hal JC, Tanha J, MacKenzie R. Multivalent anchoring and oriented display of single-domain antibodies on cellulose. Sensors. 2009;9:5351–7.

    Article  CAS  Google Scholar 

  8. Schweller RM, Constantinou PE, Frankel NW, Narayan P, Diehl MR. Design of DNA-conjugated polypeptide-based capture probes for the anchoring of proteins to DNA matrices. Bioconjug Chem. 2008;19:2304–7.

    Article  CAS  Google Scholar 

  9. Rahaie M, Kazemi SS. Lectin-based biosensors: as powerful tools in bioanalytical applications. Biotechnology. 2010;9:428–43.

    Article  CAS  Google Scholar 

  10. Agarwal G, Naik RR, Stone MO. Immobilization of histidine-tagged proteins on nickel by electrochemical dip pen nanolithography. J Am Chem Soc. 2003;125:7408–12.

    Article  CAS  Google Scholar 

  11. Sigal GB, Bamdad C, Barberis A, Strominger J, Whitesides GM. A self-assembled monolayer for the binding and study of histidine-tagged proteins by surface plasmon resonance. Anal Chem. 1996;68:490–7.

    Article  CAS  Google Scholar 

  12. Ha T, Jung SO, Lee JM, Lee KY, Lee Y, Park JS, et al. Oriented immobilization of antibodies with GST-fused multiple Fc-specific B-domains on a gold surface. Anal Chem. 2007;79:546–56.

    Article  CAS  Google Scholar 

  13. Rusmini F, Zhong Z, Feijen J. Protein immobilization strategies for protein biochips. Biomacromolecules. 2007;8:1775–89.

    Article  CAS  Google Scholar 

  14. Gubala V, Harris LF, Ricco AJ, Tan MX, Williams DE. Point of care diagnostics: status and future. Anal Chem. 2012;84:487–515.

    Article  CAS  Google Scholar 

  15. Hermanson GT. Avidin-biotin system. In: Academic Press, editors. Bioconjugate techniques 2nd Edition. 2008. pp. 900–923.

  16. Hutsell SQ, Kimple RJ, Siderovski DP, Willard FS, Kimple AJ. High-affinity immobilization of proteins using biotin- and GST-based coupling strategies. Methods Mol Biol. 2010;627:75–90.

    Article  CAS  Google Scholar 

  17. Smith CL, Milea JS, Nguyen GH. Immobilization of nucleic acids using biotin-strept(avidin) systems. In: Wittmann C, editor. Immobilisation of DNA on chips II. Topics in current chemistry: Springer; 2006. p. 63–90.

  18. Sassolas A, Leca-Bouvier BD, Blum LJ. DNA biosensors and microarrays. Chem Rev. 2008;108:109–39.

    Article  CAS  Google Scholar 

  19. Nimse SB, Song K, Sonawane MD, Sayyed DR, Ki T. Immobilization techniques for microarray: challenges and applications. Sensors. 2014;14:22208–29.

    Article  Google Scholar 

  20. Brash JL, Horbett TA. Proteins at interfaces: an overview. In: Horbett TA, Brash JL, editors. Proteins at interfaces II, fundamentals and applications: American Chemical Society; 1995. p. 1–23.

  21. Yan Y, Yang H, Su Y, Qiao L. Albumin adsorption on CoCrMo alloy surfaces. Sci Rep. 2015;5:18403.

    Article  CAS  Google Scholar 

  22. Pristoupil TI, Kramlova M, Sterbikova J. On the mechanism of adsorption of proteins to nitrocellulose in membrane chromatography. J Chromatogr A. 1969;42:367–75.

    Article  CAS  Google Scholar 

  23. Holstein CA, Chevalier A, Bennett S, Anderson CE, Keniston K, Olsen C, et al. Immobilizing affinity proteins to nitrocellulose: a toolbox for paper-based assay developers. Anal Bioanal Chem. 2016;408:1335–46.

    Article  CAS  Google Scholar 

  24. Hermanson GT. Microparticles and nanoparticles. In: Academic Press. Bioconjugate techniques 3rd Edition. 2013, pp. 549–587.

  25. Chaiet L, Wolf FJ. The properties of streptavidin, a biotin-binding protein produced by Streptomycetes. Arch Biochem Biophys. 1964;106:1–5.

    Article  CAS  Google Scholar 

  26. Valimaa L, Pettersson K, Rosenberg J, Karp M, Lovgren T. Quantification of streptavidin adsorption in microtitration wells. Anal Biochem. 2004;331:376–84.

    Article  CAS  Google Scholar 

  27. Pabo CO, Sauer RT. Protein-DNA recognition. Annu Rev Biochem. 1984;53:293–321.

    Article  CAS  Google Scholar 

  28. Jana R, Hazbun TR, Fields JD, Mossing MC. Single-chain lambda Cro repressors confirm high intrinsic dimer-DNA affinity. Biochemistry. 1998;37:6446–55.

    Article  CAS  Google Scholar 

  29. Kalodimos CG, Folkers GE, Boelens R, Kaptein R. Strong DNA binding by covalently linked dimeric Lac headpiece: evidence for the crucial role of the hinge helices. Proc Natl Acad Sci U S A. 2001;98:6039–44.

    Article  CAS  Google Scholar 

  30. Aktas GB, Skouridou V, Masip L. Nucleic acid sensing with enzyme-DNA binding protein conjugates cascade and simple DNA nanostructures. Anal Bioanal Chem. 2017;409:3623–32.

    Article  CAS  Google Scholar 

  31. Aktas GB, Skouridou V, Masip L. Novel signal amplification approach for HRP-based colorimetric genosensors using DNA binding protein tags. Biosens Bioelectron. 2015;74:1005–10.

    Article  CAS  Google Scholar 

  32. Aktas GB, Wichers JH, Skouridou V, van Amerongen A, Masip L. Nucleic acid lateral flow assays using a conjugate of a DNA binding protein and carbon nanoparticles. Microchim Acta. 2019;186:426.

    Article  Google Scholar 

  33. Mujawar LH, Norde W, van Amerongen A. Spot morphology of non-contact printed protein molecules on non-porous substrates with a range of hydrophobicities. Analyst. 2013;138:518–24.

    Article  CAS  Google Scholar 

  34. Kube DM, Srivastava A. Quantitative DNA slot blot analysis: inhibition of DNA binding to membranes by magnesium ions. Nucleic Acids Res. 1997;25:3375–6.

    Article  CAS  Google Scholar 

  35. Negritto MC, Manthey GM. Overview of blotting. Curr Protoc Essential Lab Tech. 2016;13:8.1.1–8.1.22.

    Article  Google Scholar 

  36. Deegan RD, Bakajin O, Duppont TF, Huber G, Nagel SR, Witter TA. Capillary flow as the cause of ring stains from dried liquid drops. Nature. 1997;389:827–9.

    Article  CAS  Google Scholar 

  37. Mathé C, Devineau S, Aude JC, Lagniel G, Chédi S, Legros V, et al. Structural determinants for protein adsorption/non-adsorption to silica surface. PLoS One. 2013;8:e81346.

    Article  Google Scholar 

  38. Gonzalez M, Argaraña CE, Fidelio GD. Extremely high thermal stability of streptavidin and avidin upon biotin binding. Biomol Eng. 1999;16:67–72.

    Article  CAS  Google Scholar 

  39. Ohlendorf DH, Tronrud DE, Matthews BW. Refined structure of Cro repressor protein from bacteriophage λ suggests both flexibility and plasticity. J Mol Biol. 1998;280:129–36.

    Article  CAS  Google Scholar 

  40. Aktas GB, Skouridou V, Masip L. Sandwich-type aptasensor employing modified aptamers and enzyme-DNA binding protein conjugates. Anal Bioanal Chem. 2018;411:3581–9.

    Article  Google Scholar 

  41. Jauset-Rubio M, Svobodová M, Mairal T, McNeil C, Keegan N, Saeed A, et al. Ultrasensitive, rapid and inexpensive detection of DNA using paper based lateral flow assay. Sci Rep. 2016;6:37732.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

GBA acknowledges the Universitat Rovira i Virgili for the doctoral fellowship. The authors thank Dr. Aart van Amerongen (Wageningen University and Research, The Netherlands) for the carbon nanoparticles.

Funding

This work was supported financially by the FP7-PEOPLE-2011-CIG DeCoDeB project grant awarded to LM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lluis Masip.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(PDF 227 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aktas, G.B., Ribera, A., Skouridou, V. et al. DNA immobilization and detection using DNA binding proteins. Anal Bioanal Chem 413, 1929–1939 (2021). https://doi.org/10.1007/s00216-021-03162-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-021-03162-5

Keywords

Navigation