Skip to main content
Log in

Complementary neuropeptide detection in crustacean brain by mass spectrometry imaging using formalin and alternative aqueous tissue washes

  • Communication
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Neuropeptides are low abundance signaling molecules that modulate almost every physiological process, and dysregulation of neuropeptides is implicated in disease pathology. Mass spectrometry (MS) imaging is becoming increasingly useful for studying neuropeptides as new sample preparation methods for improving neuropeptide detection are developed. In particular, proper tissue washes prior to MS imaging have shown to be quick and effective strategies for increasing the number of detectable neuropeptides. Treating tissues with solvents could result in either gain or loss of detection of analytes, and characterization of these wash effects is important for studies targeting sub-classes of neuropeptides. In this communication, we apply aqueous tissue washes that contain sodium phosphate salts, including 10% neutral buffered formalin (NBF), on crustacean brain tissues. Our optimized method resulted in complementary identification of neuropeptides between washed and unwashed tissues, indicating that our wash protocol may be used to increase total neuropeptide identifications. Finally, we show that identical neuropeptides were detected between tissues treated with 10% NBF and an aqueous 1% w/v sodium phosphate solution (composition of 10% NBF without formaldehyde), suggesting that utilizing a salt solution wash affects neuropeptide detection and formaldehyde does not affect neuropeptide detection when our wash protocol is performed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Data availability

The datasets generated during and/or analyzed during the current study are available in the MassIVE repository: https://doi.org/10.25345/C5DQ8H. MassIVE DOI: MSV000085824.

References

  1. Webster SG, Keller R, Dircksen H. The CHH-superfamily of multifunctional peptide hormones controlling crustacean metabolism, osmoregulation, moulting, and reproduction. Gen Comp Endocrinol. 2012;175(2):217–33.

    Article  CAS  PubMed  Google Scholar 

  2. Carniglia L, Ramírez D, Durand D, Saba J, Turati J, Caruso C, et al. Neuropeptides and microglial activation in inflammation, pain, and neurodegenerative diseases. Mediat Inflamm. 2017;2017:5048616.

    Article  Google Scholar 

  3. Gäde G, Hoffmann K-H. Neuropeptides regulating development and reproduction in insects. Physiol Entomol. 2005;30(2):103–21.

    Article  Google Scholar 

  4. Kormos V, Gaszner B. Role of neuropeptides in anxiety, stress, and depression: from animals to humans. Neuropeptides. 2013;47(6):401–19.

    Article  CAS  PubMed  Google Scholar 

  5. Lolait SJ, Roper JA, Hazell GGJ, Li Y, Thomson FJ, O'Carroll AM. Neuropeptide receptors. In: Murphy D, Gainer H, editors. Molecular neuroendocrinology: from genome to physiology. Hoboken: John Wiley & Sons; 2016. pp. 195–215.

  6. Russo AF. Overview of neuropeptides: awakening the senses? Headache. 2017;57(Suppl 2):37–46.

    Article  PubMed  PubMed Central  Google Scholar 

  7. van der Klaauw AA. Neuropeptides in obesity and metabolic disease. Clin Chem. 2018;64(1):173–82.

    Article  PubMed  Google Scholar 

  8. Li C, Wu X, Liu S, Zhao Y, Zhu J, Liu K. Roles of neuropeptide Y in neurodegenerative and neuroimmune diseases. Front Neurosci. 2019;13:869.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Nusbaum MP, Blitz DM, Marder E. Functional consequences of neuropeptide and small-molecule co-transmission. Nat Rev Neurosci. 2017;18(7):389–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Romanova EV, Sweedler JV. Peptidomics for the discovery and characterization of neuropeptides and hormones. Trends Pharmacol Sci. 2015;36(9):579–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Karas M, Krüger R. Ion formation in MALDI: the cluster ionization mechanism. Chem Rev. 2003;103(2):427–40.

    Article  CAS  PubMed  Google Scholar 

  12. DeLaney K, Buchberger AR, Atkinson L, Grunder S, Mousley A, Li L. New techniques, applications and perspectives in neuropeptide research. J Exp Biol. 2018;221:jeb151167.

  13. Yin P, Hou X, Romanova EV, Sweedler JV. Neuropeptidomics: mass spectrometry-based qualitative and quantitative analysis. Methods Mol Biol. 2011;789:223–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Buchberger AR, Vu NQ, Johnson J, DeLaney K, Li L. A simple and effective sample preparation strategy for MALDI-MS imaging of neuropeptide changes in the crustacean brain due to hypoxia and hypercapnia stress. J Am Soc Mass Spectrom. 2020;31(5):1058–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Liang Z, Schmerberg CM, Li L. Mass spectrometric measurement of neuropeptide secretion in the crab, Cancer borealis, by in vivo microdialysis. Analyst. 2015;140(11):3803–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li G, Ma F, Cao Q, Zheng Z, DeLaney K, Liu R, et al. Nanosecond photochemically promoted click chemistry for enhanced neuropeptide visualization and rapid protein labeling. Nat Commun. 2019;10(1):4697.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Fleites LA, Johnson R, Kruse AR, Nachman RJ, Hall DG, MacCoss M, et al. Peptidomics approaches for the identification of bioactive molecules from. J Proteome Res. 2020;19(4):1392–408.

    Article  CAS  PubMed  Google Scholar 

  18. Altelaar AFM, Taban IM, McDonnell LA, Verhaert PDEM, de Lange RPJ, Adan RAH, et al. High-resolution MALDI imaging mass spectrometry allows localization of peptide distributions at cellular length scales in pituitary tissue sections. Int J Mass Spectrom. 2007;260(2):203–11.

    Article  CAS  Google Scholar 

  19. Yang J, Caprioli RM. Matrix sublimation/recrystallization for imaging proteins by mass spectrometry at high spatial resolution. Anal Chem. 2011;83(14):5728–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hulme H, Fridjonsdottir E, Gunnarsdottir H, Vallianatou T, Zhang X, Wadensten H, et al. Simultaneous mass spectrometry imaging of multiple neuropeptides in the brain and alterations induced by experimental parkinsonism and L-DOPA therapy. Neurobiol Dis. 2020;137:104738.

    Article  CAS  PubMed  Google Scholar 

  21. Shariatgorji M, Nilsson A, Källback P, Karlsson O, Zhang X, Svenningsson P, et al. Pyrylium salts as reactive matrices for MALDI-MS imaging of biologically active primary amines. J Am Soc Mass Spectrom. 2015;26(6):934–9.

    Article  CAS  PubMed  Google Scholar 

  22. Lucius R, Mentlein R. Degradation of the neuropeptide somatostatin by cultivated neuronal and glial cells. J Biol Chem. 1991;266(28):18907–13.

    Article  CAS  PubMed  Google Scholar 

  23. Wagner L, Wolf R, Zeitschel U, Rossner S, Petersén Å, Leavitt BR, et al. Proteolytic degradation of neuropeptide Y (NPY) from head to toe: identification of novel NPY-cleaving peptidases and potential drug interactions in CNS and periphery. J Neurochem. 2015;135(5):1019–37.

    Article  CAS  PubMed  Google Scholar 

  24. McKelvy JF, Blumberg S. Inactivation and metabolism of neuropeptides. Annu Rev Neurosci. 1986;9(1):415–34.

    Article  CAS  PubMed  Google Scholar 

  25. Xie F, Romanova EV, Sweedler JV. Neuropeptidomics of the mammalian brain. In: Li KW, editor. Neuroproteomics. Totowa: Humana Press; 2011. p. 229–42.

    Chapter  Google Scholar 

  26. Thavarajah R, Mudimbaimannar VK, Elizabeth J, Rao UK, Ranganathan K. Chemical and physical basics of routine formaldehyde fixation. J Oral Maxillofac Pathol. 2012;16(3):400–5.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Fowler CB, O'Leary TJ, Mason JT. Protein mass spectrometry applications on FFPE tissue sections. Methods Mol Biol. 2011;724:281–95.

    Article  CAS  PubMed  Google Scholar 

  28. Metz B, Kersten GF, Hoogerhout P, Brugghe HF, Timmermans HA, de Jong A, et al. Identification of formaldehyde-induced modifications in proteins: reactions with model peptides. J Biol Chem. 2004;279(8):6235–43.

    Article  CAS  PubMed  Google Scholar 

  29. Patel E. Fresh frozen versus formalin-fixed paraffin embedded for mass spectrometry imaging. Methods Mol Biol. 2017;1618:7–14.

    Article  CAS  PubMed  Google Scholar 

  30. Longuespée R, Kriegsmann K, Cremer M, Zgorzelski C, Casadonte R, Kazdal D, et al. In MALDI-mass spectrometry imaging on formalin-fixed paraffin-embedded tissue specimen section thickness significantly influences m/z peak intensity. Proteomics Clin Appl. 2019;13(1):e1800074.

    Article  PubMed  Google Scholar 

  31. Hermann J, Noels H, Theelen W, Lellig M, Orth-Alampour S, Boor P, et al. Sample preparation of formalin-fixed paraffin-embedded tissue sections for MALDI-mass spectrometry imaging. Anal Bioanal Chem. 2020;412(6):1263–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Paine MRL, Ellis SR, Maloney D, Heeren RMA, Verhaert P. Digestion-free analysis of peptides from 30-year-old formalin-fixed, paraffin-embedded tissue by mass spectrometry imaging. Anal Chem. 2018;90(15):9272–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Harris A, Roseborough A, Mor R, Yeung KK, Whitehead SN. Ganglioside detection from formalin-fixed human brain tissue utilizing MALDI imaging mass spectrometry. J Am Soc Mass Spectrom. 2020;31(3):479–87.

    Article  CAS  PubMed  Google Scholar 

  34. Elphick MR, Mirabeau O, Larhammar D. Evolution of neuropeptide signalling systems. J Exp Biol. 2018;221(3):jeb151092.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Nässel DR, Zandawala M, Kawada T, Satake H. Tachykinins: Neuropeptides that are ancient, diverse, widespread and functionally pleiotropic. Front Neurosci. 2019;13:1262.

  36. Gutierrez GJ, Grashow RG. Cancer borealis stomatogastric nervous system dissection. J Vis Exp. 2009;25:1207.

  37. Veenstra JA. Similarities between decapod and insect neuropeptidomes. PeerJ. 2016;4:e2043.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Christie AE, Stemmler EA, Dickinson PS. Crustacean neuropeptides. Cell Mol Life Sci. 2010;67(24):4135–69.

    Article  CAS  PubMed  Google Scholar 

  39. Rešetar Maslov D, Svirkova A, Allmaier G, Marchetti-Deschamann M, Kraljević Pavelić S. Optimization of MALDI-TOF mass spectrometry imaging for the visualization and comparison of peptide distributions in dry-cured ham muscle fibers. Food Chem. 2019;283:275–86.

    Article  PubMed  Google Scholar 

  40. Seeley EH, Oppenheimer SR, Mi D, Chaurand P, Caprioli RM. Enhancement of protein sensitivity for MALDI imaging mass spectrometry after chemical treatment of tissue sections. J Am Soc Mass Spectrom. 2008;19(8):1069–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lampila LE. Applications and functions of food-grade phosphates. Ann N Y Acad Sci. 2013;1301:37–44.

    Article  CAS  PubMed  Google Scholar 

  42. Stemmler EA, Gardner NP, Guiney ME, Bruns EA, Dickinson PS. The detection of red pigment-concentrating hormone (RPCH) in crustacean eyestalk tissues using matrix-assisted laser desorption/ionization–Fourier transform mass spectrometry: [M + Na]+ ion formation in dried droplet tissue preparations. J Mass Spectrom. 2006;41(3):295–311.

    Article  CAS  PubMed  Google Scholar 

  43. Laremore TN, Linhardt RJ. Improved matrix-assisted laser desorption/ionization mass spectrometric detection of glycosaminoglycan disaccharides as cesium salts. Rapid Commun Mass Spectrom. 2007;21(7):1315–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cerruti CD, Touboul D, Guérineau V, Petit VW, Laprévote O, Brunelle A. MALDI imaging mass spectrometry of lipids by adding lithium salts to the matrix solution. Anal Bioanal Chem. 2011;401(1):75–87.

    Article  CAS  PubMed  Google Scholar 

  45. Griffiths RL, Bunch J. A survey of useful salt additives in matrix-assisted laser desorption/ionization mass spectrometry and tandem mass spectrometry of lipids: introducing nitrates for improved analysis. Rapid Commun Mass Spectrom. 2012;26(13):1557–66.

    Article  CAS  PubMed  Google Scholar 

  46. Dufresne M, Patterson NH, Norris JL, Caprioli RM. Combining salt doping and matrix sublimation for high spatial resolution MALDI imaging mass spectrometry of neutral lipids. Anal Chem. 2019;91(20):12928–34.

    Article  CAS  PubMed  Google Scholar 

  47. Cunningham R, Wang J, Wellner D, Li L. Investigation and reduction of sub-microgram peptide loss using molecular weight cut-off fractionation prior to mass spectrometric analysis. J Mass Spectrom. 2012;47(10):1327–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Thomas A, Patterson NH, Laveaux Charbonneau J, Chaurand P. Orthogonal organic and aqueous-based washes of tissue sections to enhance protein sensitivity by MALDI imaging mass spectrometry. J Mass Spectrom. 2013;48(1):42–8.

    Article  CAS  PubMed  Google Scholar 

  49. Monroe E, Koszczuk B, Losh J, Jurchen J, Sweedler J. Measuring salty samples without adducts with MALDI MS. Int J Mass Spectrom. 2007;260(2–3):237–42.

  50. Matsushita S, Masaki N, Sato K, Hayasaka T, Sugiyama E, Hui SP, et al. Selective improvement of peptides imaging on tissue by supercritical fluid wash of lipids for matrix-assisted laser desorption/ionization mass spectrometry. Anal Bioanal Chem. 2017;409(6):1475–80.

    Article  CAS  PubMed  Google Scholar 

  51. Kaya I, Brinet D, Michno W, Başkurt M, Zetterberg H, Blenow K, et al. Novel trimodal MALDI imaging mass spectrometry (IMS3) at 10 μm reveals spatial lipid and peptide correlates implicated in Aβ plaque pathology in Alzheimer’s disease. ACS Chem Neurosci. 2017;8(12):2778–90.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported in part by a National Science Foundation grant (CHE-1710140) and the National Institutes of Health (NIH) through grants 1R01DK071801 and R56 MH110215. N.Q.V. would like to thank the National Heart, Lung, and Blood Institute of the NIH under the Training Program in Translational Cardiovascular Science (T32 HL007936-20) for funding. A.R.B. was funded through the NIH in the form of a General Medical Sciences NRSA Fellowship 1F31GM119365. J.J would like to acknowledge the University of Wisconsin Carbone Cancer Center (233-AAC9675) and the UWCCC Pancreatic Cancer Taskforce for Funding. L.L. acknowledges a Vilas Distinguished Achievement Professorship and Charles Melbourne Johnson Professorship with funding provided by the Wisconsin Alumni Research Foundation and University of Wisconsin-Madison School of Pharmacy. The MALDI-Orbitrap instrument was purchased through the support of an NIH shared instrument grant (S10RR029531) and Office of the Vice Chancellor for Research and Graduate Education at the University of Wisconsin−Madison.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design, L.Li supervised the work. Material preparation, data collection, and analysis were performed by N.Q.Vu, A.R.Buchberger, and J.Johnson. The first draft of the manuscript was written by N.Q.Vu and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Lingjun Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Code availability

In-house crustacean neuropeptide database is available from the corresponding author upon reasonable request.

Additional information

Published in the topical collection Mass Spectrometry Imaging 2.0 with guest editors Shane R. Ellis and Tiffany Siegel Porta.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(PDF 623 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vu, N.Q., Buchberger, A.R., Johnson, J. et al. Complementary neuropeptide detection in crustacean brain by mass spectrometry imaging using formalin and alternative aqueous tissue washes. Anal Bioanal Chem 413, 2665–2673 (2021). https://doi.org/10.1007/s00216-020-03073-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-03073-x

Keywords

Navigation