Skip to main content
Log in

A single-cell identification and capture chip for automatically and rapidly determining hydraulic permeability of cells

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The hydraulic permeability of the lipid bilayer membrane of a single cell, a very important parameter in biological and medical fields, has been attracting increasing attention. To date, methods developed to determine this permeability are either operation-complicated or time-consuming. Therefore, we developed a chip for automatically and rapidly determining the permeability of cells that integrates microfluidics and cell impedance analysis. The chip is designed to automatically identify a single cell, capture the cell, and record the volume change in that cell. We confirmed the abilities of single-cell identification and capture with the upper and lower voltage thresholds determined, validated the performance of the differential electrode design for accurate cell volume measurements, deduced the extracellular osmotic pressure change in the presence of a hypertonic solution according to fluorescence intensity, and demonstrated the single-cell volume change recorded by the chip. Then, the accuracy of the permeability determined with the chip was verified using HeLa cells. Finally, the permeability of human-induced pluripotent stem cells (hiPSCs) was determined to be 0.47 ± 0.03 μm/atm/min. Using the chip, the permeability can be determined within 5 min. This study provides insights for the new design of an automatic single-cell identification and capture chip for single cell–related studies.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data associated to this study is available from the authors upon reasonable request.

References

  1. Shu ZQ, Hughes SM, Fang CF, Huang JH, Fu BW, Zhao G, et al. A study of the osmotic characteristics, water permeability, and cryoprotectant permeability of human vaginal immune cells. Cryobiology. 2016;72:93–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Peckys D, Mazur P. Regulatory volume decrease in COS-7 cells at 22 °C and its influence on the Boyle van’t Hoff relation and the determination of the osmotically inactive volume. Cryobiology. 2012;65:74–8.

    PubMed  PubMed Central  Google Scholar 

  3. Kulbacka J, Choromańska A, Rossowska J, Weżgowiec J, Saczko J, Rols M-P. Cell membrane transport mechanisms: ion channels and electrical properties of cell membranes. In: Kulbacka J, Satkauskas S, editors. Transport across natural and modified biological membranes and its implications in physiology and therapy. Cham: Springer International; 2017. p. 39–58.

    Google Scholar 

  4. Baharvand H, Salekdeh GH, Taei A, Mollamohammadi S. An efficient and easy-to-use cryopreservation protocol for human ES and iPS cells. Nat Protoc. 2010;5:588–94.

    CAS  PubMed  Google Scholar 

  5. Hunt CJ. Cryopreservation of human stem cells for clinical application: a review. Transfus Med Hemother. 2011;38:107–23.

    PubMed  PubMed Central  Google Scholar 

  6. Lei ZL, Xie DC, Mbogba MK, Chen ZR, Tian CH, Xu L, et al. A microfluidic platform with cell-scale precise temperature control for simultaneous investigation of the osmotic responses of multiple oocytes. Lab Chip. 2019;19:1929–40.

    CAS  PubMed  Google Scholar 

  7. Peckys DB, Kleinhans FW, Mazur P. Rectification of the water permeability in COS-7 cells at 22, 10 and 0°C. PLoS One. 2011;6:e23643.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Li M, Yang Y. Quaternized chitosan promotes the antiproliferative effect of vemurafenib in melanoma cells by increasing cell permeability. Onco Targets Ther. 2018;11:8293–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Muldrew K, Schachar J, Cheng P, Rempel C, Liang S, Wan R. The possible influence of osmotic poration on cell membrane water permeability. Cryobiology. 2009;58:62–8.

    CAS  PubMed  Google Scholar 

  10. Liu J, Mullen S, Meng QG, Critser J, Dinnyes A. Determination of oocyte membrane permeability coefficients and their application to cryopreservation in a rabbit model. Cryobiology. 2009;59:127–34.

    CAS  PubMed  Google Scholar 

  11. Agca Y, Liu J, Mullen S, Johnson-Ward J, Gould K, Chan A, et al. Chimpanzee (Pan troglodytes) spermatozoa osmotic tolerance and cryoprotectant permeability characteristics. J Androl. 2005;26:470–7.

    PubMed  Google Scholar 

  12. Agca Y, Mullen S, Liu J, Johnson-Ward J, Gould K, Chan A, et al. Osmotic tolerance and membrane permeability characteristics of rhesus monkey (Macaca mulatta) spermatozoa. Cryobiology. 2005;51:1–14.

    CAS  PubMed  Google Scholar 

  13. Casula E, Asuni GP, Sogos V, Fadda S, Delogu F, Cincotti A. Osmotic behaviour of human mesenchymal stem cells: implications for cryopreservation. PLoS One. 2017;12:e0184180.

    PubMed  PubMed Central  Google Scholar 

  14. Higgins AZ, Karlsson JOM. Curve fitting approach for measurement of cellular osmotic properties by the electrical sensing zone method. I. Osmotically inactive volume. Cryobiology. 2008;57:223–33.

    CAS  PubMed  Google Scholar 

  15. Ameri SK, Singh PK, Dokmeci MR, Khademhosseini A, Xu QB, Sonkusale SR. All electronic approach for high-throughput cell trapping and lysis with electrical impedance monitoring. Biosens Bioelectron. 2014;54:462–7.

    CAS  PubMed  Google Scholar 

  16. Jang LS, Wang MH. Microfluidic device for cell capture and impedance measurement. Biomed Microdevices. 2007;9:737–43.

    PubMed  Google Scholar 

  17. Nguyen TA, Yin TI, Reyes D, Urban GA. Microfluidic chip with integrated electrical cell-impedance sensing for monitoring single cancer cell migration in three-dimensional matrixes. Anal Chem. 2013;85:11068–76.

    CAS  PubMed  Google Scholar 

  18. Altschuler SJ, Wu LF. Cellular heterogeneity: do differences make a difference? Cell. 2010;141:559–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Liu W, Zhao G, Shu ZQ, Wang T, Zhu KX, Gao DY. High-precision approach based on microfluidic perfusion chamber for quantitative analysis of biophysical properties of cell membrane. Int J Heat Mass Transf. 2015;86:869–79.

    CAS  Google Scholar 

  20. Li L, Chen ZR, Zhang MK, Panhwar F, Gao C, Zhao G, et al. Cell membrane permeability coefficients determined by single-step osmotic shift are not applicable for optimization of multi-step addition of cryoprotective agents: as revealed by HepG2 cells. Cryobiology. 2017;79:82–6.

    CAS  PubMed  Google Scholar 

  21. Chen HH, Shen H, Heimfeld S, Tran KK, Reems J, Folch A, et al. A microfluidic study of mouse dendritic cell membrane transport properties of water and cryoprotectants. Int J Heat Mass Transf. 2008;51:5687–94.

    CAS  Google Scholar 

  22. Mbogba MK, Haider Z, Hossain SMC, Huang DB, Memon K, Panhwar F, et al. The application of convolution neural network based cell segmentation during cryopreservation. Cryobiology. 2018;85:95–104.

    PubMed  Google Scholar 

  23. Wang JY, Zhao G, Shu ZQ, Zhou P, Cao YX, Gao DY. Effect of iron oxide nanoparticles on the permeability properties of Sf21 cells. Cryobiology. 2016;72:21–6.

    CAS  PubMed  Google Scholar 

  24. Zhao G, Zhang ZG, Zhang YT, Chen ZR, Niu D, Cao YX, et al. A microfluidic perfusion approach for on-chip characterization of the transport properties of human oocytes. Lab Chip. 2017;17:1297–305.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Xu YQ, Zhang L, Xu JD, Wei YP, Xu X. Membrane permeability of the human pluripotent stem cells to Me2SO, glycerol and 1,2-propanediol. Arch Biochem Biophys. 2014;550:67–76.

    PubMed  Google Scholar 

  26. Lyu SR, Chen WJ, Hsieh WH. Measuring transport properties of cell membranes by a PDMS microfluidic device with controllability over changing rate of extracellular solution. Sensors Actuators B Chem. 2014;197:28–34.

    CAS  Google Scholar 

  27. Chen HH, Purtteman JJP, Heimfeld S, Folch A, Gao D. Development of a microfluidic device for determination of cell osmotic behavior and membrane transport properties. Cryobiology. 2007;55:200–9.

    CAS  PubMed  Google Scholar 

  28. Xu YC, Xie XW, Duan Y, Wang L, Cheng Z, Cheng J. A review of impedance measurements of whole cells. Biosens Bioelectron. 2016;77:824–36.

    CAS  PubMed  Google Scholar 

  29. Holmes D, Pettigrew D, Reccius CH, Gwyer JD, van Berkel C, Holloway J, et al. Leukocyte analysis and differentiation using high speed microfluidic single cell impedance cytometry. Lab Chip. 2009;9:2881–9.

    CAS  PubMed  Google Scholar 

  30. Park J, Il Jin S, Kim HM, Ahn J, Kim YG, Lee EG, et al. Monitoring change in refractive index of cytosol of animal cells on affinity surface under osmotic stimulus for label-free measurement of viability. Biosens Bioelectron. 2015;64:241–6.

    CAS  PubMed  Google Scholar 

  31. Zi Q, Ding WP, Sun CL, Li SB, Gao DY, He LQ, et al. On-chip label-free determination of cell survival rate. Biosens Bioelectron. 2020;148:111820.

    CAS  PubMed  Google Scholar 

  32. Sun T, Green NG, Morgan H. Analytical and numerical modeling methods for impedance analysis of single cells on-chip. Nano. 2008;3:55–63.

    CAS  Google Scholar 

  33. Zhou Y, Basu S, Laue ED, Seshia AA. Dynamic monitoring of single cell lysis in an impedance-based microfluidic device. Biomed Microdevices. 2016;18:56.

    PubMed  PubMed Central  Google Scholar 

  34. Malleo D, Nevill JT, Lee LP, Morgan H. Continuous differential impedance spectroscopy of single cells. Microfluid Nanofluid. 2010;9:191–8.

    PubMed  Google Scholar 

  35. Zhou Y, Basu S, Laue E, Seshia AA. Single cell studies of mouse embryonic stem cell (mESC) differentiation by electrical impedance measurements in a microfluidic device. Biosens Bioelectron. 2016;81:249–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Frimat JP, Becker M, Chiang YY, Marggraf U, Janasek D, Hengstler JG, et al. A microfluidic array with cellular valving for single cell co-culture. Lab Chip. 2011;11:231–7.

    CAS  PubMed  Google Scholar 

  37. Tan WH, Takeuchi S. A trap-and-release integrated microfluidic system for dynamic microarray applications. Proc Natl Acad Sci U S A. 2007;104:1146–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Gawad S, Schild L, Renaud P. Micromachined impedance spectroscopy flow cytometer for cell analysis and particle sizing. Lab Chip. 2001;1:76–82.

    CAS  PubMed  Google Scholar 

  39. Emaminejad S, Javanmard M, Dutton RW, Davis RW. Microfluidic diagnostic tool for the developing world: contactless impedance flow cytometry. Lab Chip. 2012;12:4499–507.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Emaminejad S, Paik KH, Tabard-Cossa V, Javanmard M. Portable cytometry using microscale electronic sensing. Sensors Actuators B Chem. 2016;224:275–81.

    CAS  Google Scholar 

  41. McDonald JC, Duffy DC, Anderson JR, Chiu DT, Wu HK, Schueller OJA, et al. Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis. 2000;21:27–40.

    CAS  PubMed  Google Scholar 

  42. Hassan U, Watkins NN, Edwards C, Bashir R. Flow metering characterization within an electrical cell counting microfluidic device. Lab Chip. 2014;14:1469–76.

    CAS  PubMed  Google Scholar 

  43. Hua SZ, Pennell T. A microfluidic chip for real-time studies of the volume of single cells. Lab Chip. 2009;9:251–6.

    CAS  PubMed  Google Scholar 

  44. Mazur P. Equilibrium, quasi-equilibrium, and nonequilibrium freezing of mammalian embryos. Cell Biophys. 1990;17:53–92.

    CAS  PubMed  Google Scholar 

  45. Vian AM, Higgins AZ. Membrane permeability of the human granulocyte to water, dimethyl sulfoxide, glycerol, propylene glycol and ethylene glycol. Cryobiology. 2014;68:35–42.

    CAS  PubMed  Google Scholar 

  46. Hou HW, Warkiani ME, Khoo BL, Li ZR, Soo RA, Tan DSW, et al. Isolation and retrieval of circulating tumor cells using centrifugal forces. Sci Rep. 2013;3:1259.

    PubMed  PubMed Central  Google Scholar 

  47. Spencer D, Morgan H. Positional dependence of particles in microfludic impedance cytometry. Lab Chip. 2011;11:1234–9.

    CAS  PubMed  Google Scholar 

  48. Adan A, Alizada G, Kiraz Y, Baran Y, Nalbant A. Flow cytometry: basic principles and applications. Crit Rev Biotechnol. 2017;37:163–76.

    CAS  PubMed  Google Scholar 

  49. Zhou Y, Basu S, Wohlfahrt KJ, Lee SF, Klenerman D, Laue ED, et al. A microfluidic platform for trapping, releasing and super-resolution imaging of single cells. Sensors Actuators B Chem. 2016;232:680–91.

    CAS  Google Scholar 

  50. Sun JS, Stowers CC, Boczko EM, Li DY. Measurement of the volume growth rate of single budding yeast with the MOSFET-based microfluidic Coulter counter. Lab Chip. 2010;10:2986–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Oren Y, Freger V, Linder C. Highly conductive ordered heterogeneous ion-exchange membranes. J Membr Sci. 2004;239:17–26.

    CAS  Google Scholar 

  52. Thirumala S, Forman JM, Monroe WT, Devireddy RV. Freezing and post-thaw apoptotic behaviour of cells in the presence of palmitoyl nanogold particles. Nanotechnology. 2007;18:19.

    Google Scholar 

  53. Sun JS, Yang JK, Gao YD, Xu DY, Li DY. Reference channel-based microfluidic resistance sensing for single yeast cell volume growth measurement. Microfluid Nanofluid. 2017;21:33.

    Google Scholar 

  54. Tseng HY, Sun SJ, Shu ZQ, Ding WP, Reems JA, Gao DY. A microfluidic study of megakaryocytes membrane transport properties to water and dimethyl sulfoxide at suprazero and subzero temperatures. Biopreserv Biobank. 2011;9:355–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Yue C, Zhao G, Yi JR, Gao C, Shen LX, Zhang YT, et al. Effect of hydroxyapatite nanoparticles on osmotic responses of pig iliac endothelial cells. Cryobiology. 2014;69:273–80.

    CAS  PubMed  Google Scholar 

  56. Zhang YT, Zhao G, Yi JR, Shu ZQ, Zhou P, Cao YX, et al. Comparison of the fitting validity between the 2P model and the nondilute solution model using statistical methods in modeling cell membrane permeabilities. Biopreserv Biobank. 2016;14:39–44.

    PubMed  Google Scholar 

  57. Takamatsu H, Komori Y, Zawlodzka S, Fujii M. Quantitative examination of a perfusion microscope for the study of osmotic response of cells. J Biomech Eng. 2004;126:402–9.

    PubMed  Google Scholar 

  58. Kikuchi T, Morizane A, Doi D, Magotani H, Onoe H, Hayashi T, et al. Human iPS cell-derived dopaminergic neurons function in a primate Parkinson’s disease model. Nature. 2017;548:592–6.

    CAS  PubMed  Google Scholar 

  59. Zhao XY, Lv Z, Li W, Zeng FY, Zhou Q. Production of mice using iPS cells and tetraploid complementation. Nat Protoc. 2010;5:963–71.

    CAS  PubMed  Google Scholar 

  60. Peng J, Fang CF, Ren S, Pan JJ, Jia YD, Shu ZQ, et al. Development of a microfluidic device with precise on-chip temperature control by integrated cooling and heating components for single updates cell-based analysis. Int J Heat Mass Transf. 2019;130:660–7.

    CAS  Google Scholar 

  61. Fang CF, Ji FJ, Shu ZQ, Gao DY. Determination of the temperature-dependent cell membrane permeabilities using microfluidics with integrated flow and temperature control. Lab Chip. 2017;17:951–60.

    CAS  PubMed  Google Scholar 

  62. Karlsson JOM, Younis AI, Chan AWS, Gould KG, Eroglu A. Permeability of the rhesus monkey oocyte membrane to water and common cryoprotectants. Mol Reprod Dev. 2009;76:321–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Wang JY, Zhu KX, Zhao G, Ren J, Yue C, Gao DY. Dual dependence of cryobiogical properties of Sf21 cell membrane on the temperature and the concentration of the cryoprotectant. PLoS One. 2013;8:e72836.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to thank the USTC Center for Micro and Nanoscale Research and Fabrication and the Research Center for Life Sciences at USTC for their assistance.

Funding

This work was partially supported by the National Natural Science Foundation of China (81627806 and 81571768). The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiping Ding.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals.

Informed consent

Informed consent is not applicable in this study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 712 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Ding, W., Li, S. et al. A single-cell identification and capture chip for automatically and rapidly determining hydraulic permeability of cells. Anal Bioanal Chem 412, 4537–4548 (2020). https://doi.org/10.1007/s00216-020-02704-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-02704-7

Keywords

Navigation