Skip to main content

Advertisement

Log in

Nanoelectrochemistry in the study of single-cell signaling

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Label-free biosensing has been the dream of scientists and biotechnologists as reported by Vollmer and Arnold (Nat Methods 5:591–596, 2008). The ability of examining living cells is crucial to cell biology as noted by Fang (Int J Electrochem 2011:460850, 2011). Chemical measurement with electrodes is label-free and has demonstrated capability of studying living cells. In recent years, nanoelectrodes of different functionality have been developed. These nanometer-sized electrodes, coupled with scanning electrochemical microscopy (SECM), have further enabled nanometer spatial resolution study in aqueous environments. Developments in the field of nanoelectrochemistry have allowed measurement of signaling species at single cells, contributing to better understanding of cell biology. Leading studies using nanoelectrochemistry of a variety of cellular signaling molecules, including redox-active neurotransmitter (e.g., dopamine), non-redox-active neurotransmitter (e.g., acetylcholine), reactive oxygen species (ROS), and reactive nitrogen species (RNS), are reviewed here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mirkin MV, Amemiya S. Nanoelectrochemistry. Boca Raton: CRC Press; 2014.

    Google Scholar 

  2. Barton ZJ, Rodríguez-López J. Lithium ion quantification using mercury amalgams as in situ electrochemical probes in nonaqueous media. Anal Chem. 2014;86(21):10660–7.

    CAS  PubMed  Google Scholar 

  3. Burgess M, Moore JS, Rodríguez-López J. Redox active polymers as soluble nanomaterials for energy storage. Acc Chem Res. 2016;49(11):2649–57.

    CAS  PubMed  Google Scholar 

  4. Murray RW. Nanoelectrochemistry: metal nanoparticles, nanoelectrodes, and nanopores. Chem Rev. 2008;108(7):2688–720.

    CAS  PubMed  Google Scholar 

  5. Rassaei L, Singh PS, Lemay SG. Lithography-based nanoelectrochemistry. Anal Chem. 2011;83(11):3974–80.

    CAS  PubMed  Google Scholar 

  6. Cox JT, Zhang B. Nanoelectrodes: recent advances and new directions. Annu Rev Anal Chem. 2012;5:253–72.

    CAS  Google Scholar 

  7. Fan Y, Han C, Zhang B. Recent advances in development and application of nanoelectrodes. Analyst. 2016;141(19):5474–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Clausmeyer J, Schuhmann W. Nanoelectrodes: applications in electrocatalysis, single-cell analysis and high-resolution electrochemical imaging. Trends Anal Chem. 2016;79:46–59.

    CAS  Google Scholar 

  9. Edwards MA, Robinson DA, Ren H, Cheyne CG, Tan CS, White HS. Nanoscale electrochemical kinetics & dynamics: the challenges and opportunities of single-entity measurements. Faraday Discuss. 2018;210:9–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Goines S, Dick JE. Review-electrochemistry’s potential to reach the ultimate sensitivity in measurement science. J Electrochem Soc. 2020;167:037505.

    CAS  Google Scholar 

  11. Ying YL, Ding Z, Zhan D, Long YT. Advanced electroanalytical chemistry at nanoelectrodes. Chem Sci. 2017;8:3338–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Huang K, Clausmeyer J, Luo L, Jarvis K, Crooks RM. Shape-controlled electrodeposition of single Pt nanocrystals onto carbon nanoelectrodes. Faraday Discuss. 2018;210:267–80.

    CAS  PubMed  Google Scholar 

  13. Bard AJ, Fan F-RF, Kwak J, Lev O. Scanning electrochemical microscopy introduction and principles. Anal Chem. 1989;61(2):132–8.

    CAS  Google Scholar 

  14. Bard AJ, Fan F-RF, Pierce DT, Unwin PR, Wipf DO, Zhou F. Chemical imaging of surfaces with the scanning electrochemical microscope. Science. 1991;254(5028):68–74.

    CAS  PubMed  Google Scholar 

  15. Kai T, Zoski CG, Bard AJ. Scanning electrochemical microscopy at the nanometer level. Chem Commun. 2018;54:1934–47.

    CAS  Google Scholar 

  16. Shen M, Ishimatsu R, Kim J, Amemiya S. Quantitative imaging of ion transport through single nanopores by high-resolution scanning electrochemical microscopy. J Am Chem Soc. 2012;134(24):9856–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Chen R, Balla RJ, Lima A, Amemiya S. Characterization of nanopipet-supported ITIES tips for scanning electrochemical microscopy of single solid-state nanopores. Anal Chem. 2017;89(18):9946–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Sun T, Yu Y, Zacher BJ, Mirkin MV. Scanning electrochemical microscopy of individual catalytic nanoparticles. Angew Chem Int Ed. 2014;53(51):14120–3.

    CAS  Google Scholar 

  19. Kim J, Renault C, Nioradze N, Arroyo-Currás N, Leonard KC, Bard AJ. Electrocatalytic activity of individual Pt nanoparticles studied by nanoscale scanning electrochemical microscopy. J Am Chem Soc. 2016;138(27):8560–8.

    CAS  PubMed  Google Scholar 

  20. Kim J, Dick JE, Bard AJ. Advanced electrochemistry of individual metal clusters electrodeposited atom by atom to nanometer by nanometer. Acc Chem Res. 2016;49(11):2587–95.

    CAS  PubMed  Google Scholar 

  21. Mirkin MV, Sun T, Yu Y, Zhou M. Electrochemistry at one nanoparticle. Acc Chem Res. 2016;49(10):2328–35.

    CAS  PubMed  Google Scholar 

  22. Oja SM, Robinson DA, Vitti NJ, Edwards MA, Liu Y, White HS, et al. Observation of multipeak collision behavior during the electro-oxidation of single Ag nanoparticles. J Am Chem Soc. 2017;139(2):708–18.

    CAS  PubMed  Google Scholar 

  23. Anderson TJ, Zhang B. Single-nanoparticle electrochemistry through immobilization and collision. Acc Chem Res. 2016;49(11):2625–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Bard AJ, Fan F-RF. Electrochemical detection of single molecules. Acc Chem Res. 1996;29(12):572–8.

    CAS  Google Scholar 

  25. Mathwig K, Aartsma TJ, Canters GW, Lemay SG. Nanoscale methods for single-molecule electrochemistry. Annu Rev Anal Chem. 2014;7(1):383–404.

    CAS  Google Scholar 

  26. Lemay SG, Kang S, Mathwig K, Singh PS. Single-molecule electrochemistry: present status and outlook. Acc Chem Res. 2013;46(2):369–77.

    CAS  PubMed  Google Scholar 

  27. Singh PS, Kätelhön E, Mathwig K, Wolfrum B, Lemay SG. Stochasticity in single-molecule nanoelectrochemistry: origins, consequences, and solutions. ACS Nano. 2012;6(11):9662–71.

    CAS  PubMed  Google Scholar 

  28. Lu J, Fan Y, Howard MD, Vaughan JC, Zhang B. Single-molecule electrochemistry on a porous silica-coated electrode. J Am Chem Soc. 2017;139(8):2964–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Fan Y, Anderson TJ, Zhang B. Single-molecule electrochemistry: from redox cycling to single redox events. Curr Op Electrochem. 2018;7:81–6.

    CAS  Google Scholar 

  30. White RJ, Ervin EN, Yang T, Chen X, Daniel S, Cremer PS, et al. Single ion-channel recordings using glass nanopore membranes. J Am Chem Soc. 2007;129(38):11766–75.

    CAS  PubMed  Google Scholar 

  31. Johnson RP, Fleming AM, Beuth LR, Burrows CJ, White HS. Base flipping within the α-hemolysin latch allows single-molecule identification of mismatches in DNA. J Am Chem Soc. 2016;138(2):594–603.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. An N, Fleming AM, White HS, Burrows CJ. Nanopore detection of 8-oxoguanine in the human telomere repeat sequence. ACS Nano. 2015;9(4):4296–307.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhao J, Zaino LP III, Bohn PW. Potential-dependent single molecule blinking dynamics for flavin adenine dinucleotide covalently immobilized in zero-mode waveguide array of working electrodes. Faraday Discuss. 2013;164:57–69.

    CAS  PubMed  Google Scholar 

  34. Han D, Crouch GM, Fu K, Zaino LP III, Bohn PW. Single-molecule spectroelectrochemical cross-correlation during redox cycling in recessed dual ring electrode zero-mode waveguides. Chem Sci. 2017;8:5345–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Pan S, Wang G. Single molecule and single event nanoelectrochemical analysis. In: Pierce DT, Zhao JX, editors. Trace analysis with nanomaterials. Weinheim: Wiley-VCH; 2010. p. 319–39.

    Google Scholar 

  36. Singh PS, Katelhon E, Mathwig K, Wolfrum B, Lemay SG. Stochasticity in single-molecule nanoelectrochemistry: origins, consequences, and solutions. ACS Nano. 2012;6(11):966–71.

    Google Scholar 

  37. Nichols RJ, Higgins SJ. Single molecule nanoelectrochemistry in electrical junctions. Acc Chem Res. 2016;49(11):2640–8.

    CAS  PubMed  Google Scholar 

  38. Palacios RE, Fan FRF, Bard AJ, Barbara PF. Single-molecule spectrochemistry (SMS-EC). J Am Chem Soc. 2006;128(28):9028–9.

    CAS  PubMed  Google Scholar 

  39. Hill CM, Clayton DA, Pan S. Combined optical and electrochemical methods for studying electrochemistry at the single molecule and single particle level: recent progress and perspectives. Phys Chem Chem Phys. 2013;15(48):20797–807.

    CAS  PubMed  Google Scholar 

  40. Zaleski S, Wilson AJ, Mattei M, Chen X, Goubert G, Cardinal M, et al. Investigating nanoscale electrochemistry with surface- and tip- enhanced Raman spectroscopy. Acc Chem Res. 2016;49(9):2023–30.

    CAS  PubMed  Google Scholar 

  41. Fan F-RF, Bard AJ. Electrochemical detection of single molecules. Science. 1995;267(5199):871–4.

    CAS  PubMed  Google Scholar 

  42. Ervin EN, Kawano R, White RJ, White HS. Simultaneous alternating and direct current readout of protein ion channel blocking events using glass nanopore membranes. Anal Chem. 2008;80(6):2069–76.

    CAS  PubMed  Google Scholar 

  43. Chen Q, Luo L, Faraji H, Feldberg SW, White HS. Electrochemical measurements of single H2 nanobubble nucleation and stability at Pt nanoelectrodes. J Phys Chem Lett. 2014;5(20):3539–44.

    CAS  PubMed  Google Scholar 

  44. Chen Q, Luo L, White HS. Electrochemical generation of a hydrogen bubble at a recessed platinum nanopore electrode. Langmuir. 2015;31(15):4573–81.

    CAS  PubMed  Google Scholar 

  45. Chen Q, Wiedenroth HS, German SR, White HS. Electrochemical nucleation of stable N2 nanobubbles at Pt nanoelectrodes. J Am Chem Soc. 2015;137(37):12064–9.

    CAS  PubMed  Google Scholar 

  46. German SR, Edwards MA, Chen Q, Liu Y, Luo L, White HS. Electrochemistry of single nanobubbles. Estimating the critical size of bubble-forming nuclei for gas-evolving electrode reactions. Faraday Discuss. 2016;193:223–40.

    CAS  PubMed  Google Scholar 

  47. Soto ÁM, German SR, Ren H, van der Meer D, Lohse D, Edwards MA, et al. The nucleation rate of single O2 nanobubbles at Pt nanoelectrodes. Langmuir. 2018;34(25):7309–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. German SR, Edwards MA, Ren H, White HS. Critical nuclei size, rate, and activation energy of H2 gas nucleation. J Am Chem Soc. 2018;140(11):4047–53.

    CAS  PubMed  Google Scholar 

  49. Zhang Y, Clausmeyer J, Babakinejad B, López Córdoba A, Ali T, Shevchuk A, et al. Spearhead nanometric field-effect transistor sensors for single-cell analysis. ACS Nano. 2016;10(3):3214–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhou L, Gong Y, Hou J, Baker LA. Quantitative visualization of nanoscale ion transport. Anal Chem. 2017;89(24):13603–9.

    CAS  PubMed  Google Scholar 

  51. Perry D, Paulose Nadappuram B, Momotenko D, Voyias PD, Page A, Tripathi G, et al. Surface charge visualization at viable living cells. J Am Chem Soc. 2016;138(9):3152–60.

    CAS  PubMed  Google Scholar 

  52. Zhu C, Zhou L, Choi M, Baker LA. Mapping surface charge of individual microdomains with scanning ion conductance microscopy. ChemElectroChem. 2018;5(20):2986–90.

    CAS  Google Scholar 

  53. Chen B, Perry D, Page A, Kang M, Unwin PR. Scanning ion conductance microscopy: quantitative nanopipette delivery-substrate electrode collection measurements and mapping. Anal Chem. 2019;91(3):2516–24.

    CAS  PubMed  Google Scholar 

  54. Chen C-C, Zhou Y, Baker LA. Scanning ion conductance microscopy. Annu Rev Anal Chem. 2012;5(1):207–28.

    CAS  Google Scholar 

  55. Robinson DA, Liu Y, Edwards MA, Vitti NJ, Oja SM, Zhang B, et al. Collision dynamics during the electrooxidation of individual silver nanoparticles. J Am Chem Soc. 2017;139(46):16923–31.

    CAS  PubMed  Google Scholar 

  56. Hao R, Fan Y, Zhang B. Imaging dynamic collision and oxidation of single silver nanoparticles at the electrode/solution interface. J Am Chem Soc. 2017;139(35):12274–82.

    CAS  PubMed  Google Scholar 

  57. Zhang F, Edwards MA, Hao R, White HS, Zhang B. Collision and oxidation of silver nanoparticles on a gold nanoband electrode. J Phys Chem C. 2017;121(42):23564–73.

    Google Scholar 

  58. Li P, He Q, Liu HX, Liu Y, Su JJ, Tian N, et al. Collision incidents of single tetrahexahedral platinum nanocrystals recorded by a carbon nanoelectrode. ChemElectroChem. 2018;5(20):3068–72.

    CAS  Google Scholar 

  59. Pandey P, Garcia J, Guo J, Wang X, Yang D, He J. Differentiation of metallic and dielectric nanoparticles in solution by single-nanoparticle collision events at the nanoelectrode. Nanotechnology. 2019;31(1):015503.

    PubMed  Google Scholar 

  60. Cluzel P, Surette M, Leibler S. An ultrasensitive bacterial motor revealed by monitoring signaling proteins in single cells. Science. 2000;287(5458):1652.

    CAS  PubMed  Google Scholar 

  61. Shen M, Qu Z, DesLaurier J, Welle TM, Sweedler JV, Chen R. Single synaptic observation of cholinergic neurotransmission on living neurons: concentration and dynamics. J Am Chem Soc. 2018;140(25):7764–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Perry M, Li Q, Kennedy RT. Review of recent advances in analytical techniques for the determination of neurotransmitters. Anal Chim Acta. 2009;653(1):1–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Ge S, Koseoglu S, Haynes CL. Bioanalytical tools for single-cell study of exocytosis. Anal Bioanal Chem. 2010;397(8):3281–304.

    CAS  PubMed  Google Scholar 

  64. Rogers ML, Boutelle MG. Real-time clinical monitoring of biomolecules. Annu Rev Anal Chem. 2013;6:427–53.

    CAS  Google Scholar 

  65. Schulte A, Nebel M, Schuhmann W. Scanning electrochemical microscopy in neuroscience. Annu Rev Anal Chem. 2010;3:299–318.

    CAS  Google Scholar 

  66. Polcari D, Dauphin-Ducharme P, Mauzeroll J. Scanning electrochemical microscopy: a comprehensive review of experimental parameters from 1989 to 2015. Chem Rev. 2016;116(22):13234–78.

    CAS  PubMed  Google Scholar 

  67. Bergner S, Vatsyayan P, Matysik F-M. Recent advances in high resolution scanning electrochemical microscopy of living cells – a review. Anal Chim Acta. 2013;775:1–13.

    CAS  PubMed  Google Scholar 

  68. Amatore C, Arbault S, Guille M, Lemaître F. Electrochemical monitoring of single cell secretion: vesicular exocytosis and oxidative stress. Chem Rev. 2008;108(7):2585–621.

    CAS  PubMed  Google Scholar 

  69. Shen M, Colombo ML. Electrochemical nanoprobes for the chemical detection of neurotransmitters. Anal Methods. 2015;7(17):7095–105.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Keighron JD, Ewing AG, Cans A-S. Analytical tools to monitor exocytosis: a focus on new fluorescent probes and methods. Analyst. 2012;137(8):1755–63.

    CAS  PubMed  Google Scholar 

  71. Michael AC, Borland LM. Electrochemical Methods for neuroscience. Boca Raton: CRC Press/Taylor & Francis; 2007.

    Google Scholar 

  72. Gordito MP, Kotsis DH, Minteer SD, Spence DM. Flow-based amperometric detection of dopamine in an immobilized cell reactor. J Neurosci Methods. 2003;124(2):129–34.

    CAS  PubMed  Google Scholar 

  73. Garris PA, Kilpatrick M, Bunin MA, Michael D, Walker QD, Wightman RM. Dissociation of dopamine release in the nucleus accumbens from intracranial self-stimulation. Nature. 1999;398(6722):67–9.

    CAS  PubMed  Google Scholar 

  74. Zhang B, Heien MLAV, Santillo MF, Mellander L, Ewing AG. Temporal resolution in electrochemical imaging on single PC12 cells using amperometry and voltammetry at microelectrode arrays. Anal Chem. 2011;83(2):571–7.

    CAS  PubMed  Google Scholar 

  75. Hashemi P, Dankoski EC, Lama R, Wood KM, Takmakov P, Wightman RM. Brain dopamine and serotonin differ in regulation and its consequences. Proc Natl Acad Sci. 2012;109(29):11510–5.

    CAS  PubMed  Google Scholar 

  76. Amatore C, Arbault S, Bonifas I, Bouret Y, Erard M, Ewing AG, et al. Correlation between vesicle quantal size and fusion pore release in chromaffin cell exocytosis. Biophys J. 2005;88(6):4411–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Wang K, Xiao T, Yue Q, Wu F, Yu P, Mao L. Selective amperometric recording of endogenous ascorbate secretion from a single rat adrenal chromaffin cell with pretreated carbon fiber microelectrodes. Anal Chem. 2017;89(17):9502–7.

    CAS  PubMed  Google Scholar 

  78. Yin B, Barrionuevo G, Weber SG. Optimized real-time monitoring of glutathione redox status in single pyramidal neurons in organotypic hippocampal slices during oxygen-glucose deprivation and reperfusion. ACS Chem Neurosci. 2015;6(11):1838–48.

    CAS  PubMed  Google Scholar 

  79. Andrews AM. Why monitor molecules in neuroscience? ACS Chem Neurosci. 2017;8(2):211–2.

    CAS  PubMed  Google Scholar 

  80. Hu M, Fritsch I. Redox cycling behavior of individual and binary mixtures of catecholamines at gold microband electrode arrays. Anal Chem. 2015;87(4):2029–3.

    CAS  PubMed  Google Scholar 

  81. Li X, Majdi S, Dunevall J, Fathali H, Ewing AG. Quantitative measurement of transmitters in individual vesicles in the cytoplasm of single cells with nanotip electrodes. Angew Chem Int Ed. 2015;54(41):11978–82.

    CAS  Google Scholar 

  82. Takahashi Y, Shevchuk AI, Novak P, Zhang Y, Ebejer N, Macpherson JV, et al. Multifunctional nanoprobes for nanoscale chemical imaging and localized chemical delivery at surfaces and interfaces. Angew Chem Int Ed. 2011;50(41):9638–42.

    CAS  Google Scholar 

  83. Rees HR, Anderson SE, Privman E, Bau HH, Venton BJ. Carbon nanopipette electrodes for dopamine detection in drosophila. Anal Chem. 2015;87(7):3849–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Ren L, Pour MD, Majdi S, Li X, Malmberg P, Ewing AG. Zinc regulates chemical-transmitter storage in nanometer vesicles and exocytosis dynamics as measured by amperometry. Angew Chem Int Ed. 2017;56(18):4970–5.

    CAS  Google Scholar 

  85. Ye D, Gu C, Ewing A. Using single-cell amperometry and intracellular vesicle impact electrochemical cytometry to shed light on the biphasic effects of lidocaine on exocytosis. ACS Chem Neurosci. 2018;9(12):2941–7.

    CAS  PubMed  Google Scholar 

  86. Li X, Dunevall J, Ewing AG. Electrochemical quantification of transmitter concentration in single nanoscale vesicles isolated from PC12 cells. Faraday Discuss. 2018;210:353–64.

    CAS  PubMed  Google Scholar 

  87. Taleat Z, Larsson A, Ewing AG. Anticancer drug tamoxifen affects catecholamine transmitter release and storage from single cells. ACS Chem Neurosci. 2019;10(4):2060–9.

    CAS  PubMed  Google Scholar 

  88. Welle Theresa M, Alanis K, Colombo ML, Sweedler JV, Shen M. A high spatiotemporal study of somatic exocytosis with scanning electrochemical microscopy and nanoITIES electrodes. Chem Sci. 2018;9(22):4937–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Kozminski KD, Gutman DA, Davila V, Sulzer D, Ewing AG. Voltammetric and pharmacological characterization of dopamine release from single exocytotic events at rat pheochromocytoma (PC12) cells. Anal Chem. 1998;70(15):3123–30.

    CAS  PubMed  Google Scholar 

  90. Xin Q, Wightman RM. Enzyme modified amperometric sensors for choline and acetylcholine with tetrathiafulvalene tetracyanoquinodimethane as the electron-transfer mediator. Anal Chim Acta. 1997;341(1):43–51.

    CAS  Google Scholar 

  91. Mitchell KM. Acetycholine and choline amperometric enzyme sensors characterized in vitro and in vivo. Anal Chem. 2004;76(4):1098–106.

    CAS  PubMed  Google Scholar 

  92. Bruno JP, Gash C, Martin B, Zmarowski A, Pomerleau F, Burmeister J, et al. Second-by-second measurement of acetylcholine release in prefrontal cortex. Eur J Neurosci. 2006;24(10):2749–57.

    PubMed  Google Scholar 

  93. Giuliano C, Parikh V, Ward JR, Chiamulera C, Sarter M. Increases in cholinergic neurotransmission measured by using choline-sensitive microelectrodes: Enhanced detection by hydrolysis of acetylcholine on recording sites? Neurochem Int. 2008;52(7):1343–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Wilson GS, Johnson MA. In-vivo electrochemistry: what can we learn about living systems? Chem Rev. 2008;108(7):2462–81.

    CAS  PubMed  Google Scholar 

  95. Asri R, O’Neill B, Patel JC, Siletti KA, Rice ME. Detection of evoked acetycholine release in mouse brain slices. Analyst. 2016;141(23):6416–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Colombo ML, Sweedler JV, Shen M. Nanopipet-based liquid–liquid interface probes for the electrochemical detection of acetylcholine, tryptamine, and serotonin via ionic transfer. Anal Chem. 2015;87(10):5095–100.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Iwai NT, Kramaric M, Crabbe D, Wei Y, Chen R, Shen M. GABA detection with nano-ITIES pipet electrode: a new mechanism, water/DCE–octanoic acid interface. Anal Chem. 2018;90(5):3067–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Stockmann TJ, Montgomery A-M, Ding Z. Determination of alkali metal ion transfers at liquid|liquid interfaces stabilized by a micropipette. J Electroanal Chem. 2012;684:6–12.

    CAS  Google Scholar 

  99. Zhan D, Li X, Zhan W, Fan F-RF, Bard AJ. Scanning electrochemical microscopy. 58. Application of a micropipet-supported ITIES tip to detect Ag+ and study its effect on fibroblast cells. Anal. Chem. 2007;79(14):5225–31.

    CAS  Google Scholar 

  100. Vanysek P, Ramirez LB. Interface between two immiscible liquid electrolytes: a review. J Chil Chem Soc. 2008;53:1455–63.

    CAS  Google Scholar 

  101. Shao Y, Mirkin MV. Voltammetry at micropipet electrodes. Anal Chem. 1998;70(15):3155–61.

    CAS  PubMed  Google Scholar 

  102. Amemiya S, Kim J, Izadyar A, Kabagambe B, Shen M, Ishimatsu R. Electrochemical sensing and imaging based on ion transfer at liquid/liquid interfaces. Electrochim Acta. 2013;110:836–45.

    CAS  Google Scholar 

  103. Taylor G, Girault HHJ. Ion transfer reactions across a liquid—liquid interface supported on a micropipette tip. J Electroanal Chem Interfacial Electrochem. 1986;208(1):179–83.

    CAS  Google Scholar 

  104. Liu S, Li Q, Shao Y. Electrochemistry at micro- and nanoscopic liquid/liquid interfaces. Chem Soc Rev. 2011;40(5):2236–53.

    CAS  PubMed  Google Scholar 

  105. Nestor U, Wen H, Girma G, Mei Z, Fei W, Yang Y, et al. Facilitated Li+ ion transfer across the water/1,2-dichloroethane interface by the solvation effect. Chem Commun. 2014;50(8):1015–7.

    CAS  Google Scholar 

  106. Amemiya S, Wang Y, Mirkin MV. Nanoelectrochemistry at the liquid/liquid interfaces. Electrochemistry. 2013;12:1–43.

    Google Scholar 

  107. Shen M, Chen R. Real time studies of acetylcholine release from single synapses and single cells with nanometer spatial resolution. In: Wilson GS, Michael AC, editors. Compendium of in vivo monitoring in real-time molecular neuroscience. Singapore: World Scientific; 2019. p. 161–78.

    Google Scholar 

  108. Haynes CL, Buhler LA, Wightman RM. Vesicular Ca2+ -induced secretion promoted by intracellular pH-gradient disruption. Biophys Chem. 2006;123(1):20–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Yang G, Gong Y-D, Gong K, Jiang W-L, Kwon E, Wang P, et al. Reduced synaptic vesicle density and active zone size in mice lacking amyloid precursor protein (APP) and APP-like protein 2. Neurosci Lett. 2005;384(1):66–71.

    CAS  PubMed  Google Scholar 

  110. Thannickal VJ, Fanburg BL. Reactive oxygen species in cell signaling. Am. J. Physiol Lung Cell. Mol. Physiol. 2000;279(6):L1005–L28.

    CAS  Google Scholar 

  111. Sarti P, Avigliano L, Görlach A, Brüne B. Superoxide and nitric oxide–participation in cell communication. Cell Death Differ. 2002;9(10):1160–2.

    CAS  PubMed  Google Scholar 

  112. Veal EA, Day AM, Morgan BA. Hydrogen peroxide sensing and signaling. Mol Cell. 2007;26(1):1–14.

    CAS  PubMed  Google Scholar 

  113. Michaelson LP, Iler C, Ward CW. ROS and RNS signaling in skeletal muscle: critical signals and therapeutic targets. Annu Rev Nurs Res. 2013;31:367–87.

    PubMed  PubMed Central  Google Scholar 

  114. Thomas DD. Breathing new life into nitric oxide signaling: a brief overview of the interplay between oxygen and nitric oxide. Redox Biol. 2015;5:225–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Brown DI, Griendling K. Regulation of signal transduction by reactive oxygen species in the cardiovascular system. Circ Res. 2015;116(3):531–49.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Di Meo S, Reed TT, Venditti P, Victor VM. Role of ROS and RNS sources in physiological and pathological conditions. Oxidative Med Cell Longev. 2016;2016:1245049.

    Google Scholar 

  117. Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of ageing. Nature. 2000;408(6809):239–47.

    CAS  PubMed  Google Scholar 

  118. Waris G, Ahsan H. Reactive oxygen species: role in the development of cancer and various chronic conditions. J Carcinog. 2006;5:14.

    PubMed  PubMed Central  Google Scholar 

  119. Patten DA, Germain M, Kelly MA, Slack RS. Reactive oxygen species: stuck in the middle of neurodegeneration. J Alzheimers Dis. 2010;20(s2):S357–S67.

    PubMed  Google Scholar 

  120. Heinecke JL, Ridnour LA, Cheng RYS, Switzer CH, Lizardo MM, Khanna C, et al. Tumor microenvironment-based feed-forward regulation of NOS2 in breast cancer progression. Proc Natl Acad Sci. 2014;111(17):6323–8.

    CAS  PubMed  Google Scholar 

  121. Li Y, Sella C, Lemaître F, Guille-Collignon M, Thouin L, Amatore C. Electrochemical detection of nitric oxide and peroxynitrite anion in microchannels at highly sensitive platinum-black coated electrodes. Application to ROS and RNS mixtures prior to biological investigations. Electrochim Acta. 2014;144:111–8.

    CAS  Google Scholar 

  122. Wang Y, Noël J-M, Velmurugan J, Nogala W, Mirkin MV, Lu C, et al. Nanoelectrodes for determination of reactive oxygen and nitrogen species inside murine macrophages. Proc Natl Acad Sci. 2012;109(29):11534–9.

    CAS  PubMed  Google Scholar 

  123. Amatore C, Arbault S, Bouton C, Drapier J-C, Ghandour H, Koh ACW. Real-time amperometric analysis of reactive oxygen and nitrogen species released by single immunostimulated macrophages. ChemBioChem. 2008;9(9):1472–80.

    CAS  PubMed  Google Scholar 

  124. Amatore C, Arbault S, Koh ACW. Simultaneous detection of reactive oxygen and nitrogen species released by a single macrophage by triple potential-step chronoamperometry. Anal Chem. 2010;82(4):1411–9.

    CAS  PubMed  Google Scholar 

  125. Li Y, Hu K, Yu Y, Rotenberg SA, Amatore C, Mirkin MV. Direct electrochemical measurements of reactive oxygen and nitrogen species in nontransformed and metastatic human breast cells. J Am Chem Soc. 2017;139(37):13055–62.

    CAS  PubMed  Google Scholar 

  126. Ikariyama Y, Yamauchi S, Yukiashi T, Ushioda H. Micro-enzyme electrode prepared on platinized platinum. Anal Lett. 1987;20(9):1407–16.

    CAS  Google Scholar 

  127. Ikariyama Y, Yamauchi S, Yukiashi T, Ushioda H. Surface control of platinized platinum as a transducer matrix for micro-enzyme electrodes. J Electroanal Chem. 1988;251(2):267–74.

    CAS  Google Scholar 

  128. Arbault S, Pantano P, Jankowski JA, Vuillaume M, Amatore C. Monitoring an oxidative stress mechanism at a single human fibroblast. Anal Chem. 1995;67(19):3382–90.

    CAS  PubMed  Google Scholar 

  129. Li Y, Sella C, Lemaître F, Guille Collignon M, Thouin L, Amatore C. Highly sensitive platinum-black coated platinum electrodes for electrochemical detection of hydrogen peroxide and nitrite in microchannel. Electroanal. 2013;25(4):895–902.

    CAS  Google Scholar 

  130. Zhang X-W, Qiu Q-F, Jiang H, Zhang F-L, Liu Y-L, Amatore C, et al. Real-time intracellular measurements of ROS and RNS in living cells with single core–shell nanowire electrodes. Angew Chem Int Ed. 2017;56(42):12997–3000.

    CAS  Google Scholar 

  131. Slauch JM. How does the oxidative burst of macrophages kill bacteria? Still an open question. Mol Microbiol. 2011;80(3):580–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Dunevall J, Fathali H, Najafinobar N, Lovric J, Wigström J, Cans A-S, et al. Characterizing the catecholamine content of single mammalian vesicles by collision–adsorption events at an electrode. J Am Chem Soc. 2015;137(13):4344–6.

    CAS  PubMed  Google Scholar 

  133. Lovrić J, Najafinobar N, Dunevall J, Majdi S, Svir I, Oleinick A, et al. On the mechanism of electrochemical vesicle cytometry: chromaffin cell vesicles and liposomes. Faraday Discuss. 2016;193:65–79.

    PubMed  Google Scholar 

  134. Cheng W, Compton RG. Investigation of Single-Drug-Encapsulating Liposomes using the nano-impact method. Angew Chem Int Ed. 2014;53(50):13928–30.

    CAS  Google Scholar 

  135. Wang Y, Feng H, Zhang H, Chen Y, Huang W, Zhang J, et al. Nanoelectrochemical biosensors for monitoring ROS in cancer cells. Analyst. 2020. https://doi.org/10.1039/C9AN02390A.

  136. Marquitan M, Clausmeyer J, Actis P, Córdoba AL, Korchev Y, Mark MD, et al. Intracellular hydrogen peroxide detection with functionalised nanoelectrodes. ChemElectroChem. 2016;3(12):2125–9.

    CAS  Google Scholar 

  137. Clausmeyer J, Actis P, Córdoba AL, Korchev Y, Schuhmann W. Nanosensors for the detection of hydrogen peroxide. Electrochem Commun. 2014;40:28–30.

    CAS  Google Scholar 

  138. Korchev YE, Gorelik J, Lab MJ, Sviderskaya EV, Johnston CL, Coombes CR, et al. Cell volume measurement using scanning ion conductance microscopy. Biophys J. 2000;78(1):451–7.

  139. Amemiya S, Guo J, Xiong H, Gross DA. Biological applications of scanning electrochemical microscopy: chemical imaging of single living cells and beyond. Anal Bioanal Chem. 2006;386(3):458–71.

    CAS  PubMed  Google Scholar 

  140. Kim J, Izadya A, Nioradze N, Amemiya S. Nanoscale mechanism of molecular transport through the nuclear pore complex as studied by scanning electrochemical microscopy. J Am Chem Soc. 2013;135(6):2321–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Maddar FM, Pery D, Brooks R, Page A, Unwin PR. Ananoscale surface charge visualization of human hair. Anal Chem. 2019;91(7):4632–9.

    CAS  PubMed  Google Scholar 

  142. Takahashi Y, Hirano Y, Yasukawa T, Shiku H, Yamada H, Matsue T. Topographic, electrochemical, and optical images captured using standing approach mode scanning electrochemical/optical microscopy. Langmuir. 2006;22(2):10299–306.

    CAS  PubMed  Google Scholar 

  143. Actis P, Tokar S, Clausmeyer J, Babakinejad B, Mikhaeleva S, Cornut R, et al. Electrochemical nanoprobes for single-cell analysis. ACS Nano. 2014;8(1):875–84.

    CAS  PubMed  Google Scholar 

Download references

Funding

The authors appreciate the financial support from the National Science Foundation with a CAREER award (CHE 19-45274) to M.S. as well as the support from University of Illinois at Urbana-Champaign.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mei Shen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

This article does not involve any human participant or animals.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published in the topical collection featuring Female Role Models in Analytical Chemistry.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, R., Alanis, K., Welle, T.M. et al. Nanoelectrochemistry in the study of single-cell signaling. Anal Bioanal Chem 412, 6121–6132 (2020). https://doi.org/10.1007/s00216-020-02655-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-02655-z

Keywords

Navigation