Skip to main content

Advertisement

Log in

Double molecular recognition strategy based on boronic acid–diol and NHS ester–amine for selective electrochemical detection of cerebral dopamine

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Electrochemical detection of dopamine (DA) usually depends on electrochemical oxidation of DA. This conventional method can hardly provide sufficient sensitivity and selectivity in the determination of the cerebral DA down to nanomolar level, because the ability of DA to be electrochemically oxidized is limited and many electroactive interferents are also oxidized at a similar potential with DA. Here, an electrochemical assay based on a double molecular recognition strategy has been proposed and proved to be of high sensitivity and selectivity for DA measurement in the cerebral system. 3,3′-Dithiodipropionic acid di(N-hydroxysuccinimide ester) (DSP) was anchored on the electrode surface to capture DA target through the specific reaction between N-hydroxysuccinimide (NHS) ester and amine. The captured DA endowed the electrode with a layer of diol groups, which further reacted with the boronic acid to trap of 4-mercaptophenylboronic acid (MBA) molecules, thus leading to the conjunction of electroactive thionine (Th) molecules on the electrode for signal readout. In addition, an Au nanostructure was employed to enhance signal amplification and facilitate the double molecular recognition process. As a consequence, this method was able to quantify DA from 1 to 300 nM with a detection limit of 0.74 nM, which exhibited a high specificity against cerebral interferents. Furthermore, the practicability of this platform was successfully demonstrated through determination of the dynamics of cerebral DA in the events of high K+ and nomifensine retromicrodialysis.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chan T, Chow AM, Cheng XR, Tang DWF, Brown IR, Kerman K. Oxidative stress effect of dopamine on α-synuclein: electroanalysis of solvent interactions. ACS Chem Neurosci. 2012;3(7):569–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Venda LL, Cragg SJ, Buchman VL, Wade MR. α-Synuclein and dopamine at the crossroads of Parkinson’s disease. Trends Neurosci. 2010;33(12):559–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Allen SA, Rednour S, Shepard S, Pond BB. A simple and sensitive high-performance liquid chromatography–electrochemical detection assay for the quantitative determination of monoamines and respective metabolites in six discrete brain regions of mice. Biomed Chromatogr. 2017;31(11):e3998.

    Google Scholar 

  4. He Y, Zhao XE, Zhu S, Wei N, Sun J, Zhou Y, et al. In situ derivatization-ultrasound-assisted dispersive liquid–liquid microextraction for the determination of neurotransmitters in Parkinson’s rat brain microdialysates by ultra high performance liquid chromatography-tandem mass spectrometry. J Chromatogr A. 2016;1458:70–81.

    CAS  PubMed  Google Scholar 

  5. Šolínová V, Žáková L, Jiráček J, Kašička V. Pressure assisted partial filling affinity capillary electrophoresis employed for determination of binding constants of human insulin hexamer complexes with serotonin, dopamine, arginine, and phenol. Anal Chim Acta. 2019;1052:170–8.

    PubMed  Google Scholar 

  6. Zhang Q, Gong M. On-line preconcentration of fluorescent derivatives of catecholamines in cerebrospinal fluid using flow-gated capillary electrophoresis. J Chromatogr A. 2016;1450:112–20.

    CAS  PubMed  Google Scholar 

  7. Yin M, Li S, Wan Y, Feng L, Zhao X, Zhang S, et al. A selective colorimetric strategy for probing dopamine and levodopa through the mussel-inspired enhancement of Fe3O4 catalysis. Chem Commun. 2019;55(80):12008–11.

    CAS  Google Scholar 

  8. Wen D, Liu W, Herrmann AK, Haubold D, Holzschuh M, Simon F, et al. Simple and sensitive colorimetric detection of dopamine based on assembly of cyclodextrin-modified Au nanoparticles. Small. 2016;12(18):2439–42.

    CAS  PubMed  Google Scholar 

  9. Lan Y, Yuan F, Fereja TH, Wang C, Lou B, Li J, et al. Chemiluminescence of lucigenin/riboflavin and its application for selective and sensitive dopamine detection. Anal Chem. 2019;91(3):2135–9.

    CAS  PubMed  Google Scholar 

  10. Gao W, Qi L, Liu Z, Majeed S, Kitte SA, Xu G. Efficient lucigenin/thiourea dioxide chemiluminescence system and its application for selective and sensitive dopamine detection. Sens. Actuator B-Chem. 2017;238:468–72.

    CAS  Google Scholar 

  11. Peng J, Han CL, Ling J, Liu CJ, Ding ZT, Cao QE. Selective fluorescence quenching of papain–Au nanoclusters by self-polymerization of dopamine. Luminescence. 2018;33(1):168–73.

    CAS  PubMed  Google Scholar 

  12. Wang Y, Kang K, Wang S, Kang W, Cheng C, Niu LM, et al. A novel label-free fluorescence aptasensor for dopamine detection based on an exonuclease III- and SYBR Green I-aided amplification strategy. Sensors Actuators B Chem. 2020;305:127348.

    Google Scholar 

  13. Thakur N, Das Adhikary S, Kumar M, Mehta D, Padhan AK, Mandal D, et al. Ultrasensitive and highly selective electrochemical detection of dopamine using poly(ionic liquids)-cobalt polyoxometalate/CNT composite. ACS Omega. 2018;3(3):2966–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Yang J, Hu Y, Li Y. Molecularly imprinted polymer-decorated signal on-off ratiometric electrochemical sensor for selective and robust dopamine detection. Biosens Bioelectron. 2019;135:224–30.

    CAS  PubMed  Google Scholar 

  15. Kong B, Zhu A, Luo Y, Tian Y, Yu Y, Shi G. Sensitive and selective colorimetric visualization of cerebral dopamine based on double molecular recognition. Angew Chem Int Ed Eng. 2011;50(8):1837–40.

    CAS  Google Scholar 

  16. Jiang YM, Xiao X, Li CC, Luo Y, Chen S, Shi G, et al. Facile ratiometric electrochemical sensor for in vivo/online repetitive measurements of cerebral ascorbic acid in brain microdiaysate. Anal Chem. 2020;92(5):3981–9.

    CAS  PubMed  Google Scholar 

  17. Gu H, Hou Q, Liu Y, Cai Y, Guo Y, Xiang H, et al. On-line regeneration of electrochemical biosensor for in vivo repetitive measurements of striatum Cu2+ under global cerebral ischemia/reperfusion events. Biosens Bioelectron. 2019;135:111–9.

    CAS  PubMed  Google Scholar 

  18. Liu Z, Zhou F, Wu J, Yao Y, Guo Y, Liao X, et al. Dual molecular recognition strategy for highly sensitive electrochemical detection of dopamine based on amplification of DNA–Au bio–bar codes. J Electroanal Chem. 2018;823:253–60.

    CAS  Google Scholar 

  19. Gu H, Liu Y, Ren T, Xia W, Guo Y, Shi G. An electrochemical biosensor based on double molecular recognition for selective monitoring of cerebral dopamine dynamics at 4 min interval. Sensors Actuators B Chem. 2019;287:356–63.

    CAS  Google Scholar 

  20. Yu Y, Zhang L, Li C, Sun X, Tang D, Shi G. A method for evaluating the level of soluble beta-amyloid(1-40/1-42) in Alzheimer’s disease based on the binding of gelsolin to beta-amyloid peptides. Angew Chem Int Ed Eng. 2014;53(47):12832–5.

    CAS  Google Scholar 

  21. Yu Y, Sun X, Tang D, Li C, Zhang L, Nie D, et al. Gelsolin bound beta-amyloid peptides(1-40/1-42): electrochemical evaluation of levels of soluble peptide associated with Alzheimer’s disease. Biosens Bioelectron. 2015;68:115–21.

    CAS  PubMed  Google Scholar 

  22. Hanif S, Liu HL, Ahmed SA, Yang JM, Zhou Y, Pang J, et al. Nanopipette-based SERS aptasensor for subcellular localization of cancer biomarker in single cells. Anal Chem. 2017;89(18):9911–7.

    CAS  PubMed  Google Scholar 

  23. Wang J, Lu Z, Tang H, Wu L, Wang Z, Wu M, et al. Multiplexed electrochemical detection of mirnas from sera of glioma patients at different stages via the novel conjugates of conducting magnetic microbeads and diblock oligonucleotide-modified gold nanoparticles. Anal Chem. 2017;89(20):10834–40.

    CAS  PubMed  Google Scholar 

  24. Gu H, Xiong P, Tang H, Chen S, Long Y, Shi G. In vivo monitoring of cerebral glucose with an updated on-line electroanalytical system. Anal Bioanal Chem. 2019;411(23):5929–35.

    CAS  PubMed  Google Scholar 

  25. Gu H, Varner EL, Groskreutz SR, Michael AC, Weber SG. In vivo monitoring of dopamine by microdialysis with 1 min temporal resolution using online capillary liquid chromatography with electrochemical detection. Anal Chem. 2015;87(12):6088–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Zimmermann M. Ethical guidelines for investigations of experimental pain in conscious animals. Pain. 1983;16:109–10.

    CAS  PubMed  Google Scholar 

  27. Kilkenny C, Browne W, Cuthill IC, Emerson M, Altman DG. Animal research: reporting in vivo experiments: the ARRIVE guidelines. Br J Pharmacol. 2010;160:1577–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. McGrath JC, Lilley E. Implementing guidelines on reporting research using animals (ARRIVE etc.): new requirements for publication in BJP. Br J Pharmacol. 2015;172:3189–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Gu H, Yang Y, Tian J, Shi G. Photochemical synthesis of noble metal (Ag, Pd, Au, Pt) on graphene/ZnO multihybrid nanoarchitectures as electrocatalysis for H2O2 reduction. ACS Appl Mater Interfaces. 2013;5(14):6762–8.

    CAS  PubMed  Google Scholar 

  30. Sheng ZH, Shao L, Chen JJ, Bao WJ, Wang FB, Xia XH. Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis. ACS Nano. 2011;5(6):4350–8.

    CAS  PubMed  Google Scholar 

  31. Ding Y, Zhang X, Liu X, Guo R. Adsorption characteristics of thionine on gold nanoparticles. Langmuir. 2006;22(5):2292–8.

    CAS  PubMed  Google Scholar 

  32. Kajisa T, Li W, Michinobu T, Sakata T. Well-designed dopamine-imprinted polymer interface for selective and quantitative dopamine detection among catecholamines using a potentiometric biosensor. Biosens Bioelectron. 2018;117:810–7.

    CAS  PubMed  Google Scholar 

  33. Lete C, Lakard B, Hihn JY, del Campo FJ, Lupu S. Use of sinusoidal voltages with fixed frequency in the preparation of tyrosinase based electrochemical biosensors for dopamine electroanalysis. Sens. Actuator B-Chem. 2017;240:801–9.

    CAS  Google Scholar 

  34. Zhao L, Cai Z, Yao Q, Zhao T, Lin H, Xiao Y, et al. Electropolymerization fabrication of three-dimensional N, P-co-doped carbon network as a flexible electrochemical dopamine sensor. Sens. Actuator B-Chem. 2017;253:1113–9.

    CAS  Google Scholar 

  35. Xu G, Jarjes ZA, Desprez V, Kilmartin PA, Travas-Sejdic J. Sensitive, selective, disposable electrochemical dopamine sensor based on PEDOT-modified laser scribed graphene. Biosens Bioelectron. 2018;107:184–91.

    CAS  PubMed  Google Scholar 

  36. Yuan Q, Liu Y, Ye C, Sun H, Dai D, Wei Q, et al. Highly stable and regenerative graphene-diamond hybrid electrochemical biosensor for fouling target dopamine detection. Biosens Bioelectron. 2018;111:117–23.

    CAS  PubMed  Google Scholar 

  37. Tao Y, Kong Q, Tao Z, Duan J, Guan H, Chen G, et al. A nickel foam modified with electrodeposited cobalt and phosphor for amperometric determination of dopamine. Microchim Acta. 2019;186(9):602.

    Google Scholar 

  38. Li X, Lu X, Kan X. 3D electrochemical sensor based on poly(hydroquinone)/gold nanoparticles/nickel foam for dopamine sensitive detection. J Electroanal Chem. 2017;799:451–8.

    CAS  Google Scholar 

  39. Shang J, Zhao M, Qu H, Li H, Chen S. Fabrication of CQDs/MoS2/Mo foil for the improved electrochemical detection. Anal Chim Acta. 2019;1079:79–85.

    CAS  PubMed  Google Scholar 

  40. Numan A, Shahid MM, Omar FS, Ramesh K, Ramesh S. Facile fabrication of cobalt oxide nanograin-decorated reduced graphene oxide composite as ultrasensitive platform for dopamine detection. Sens. Actuator B-Chem. 2017;238:1043–51.

    CAS  Google Scholar 

  41. Liu L, Xia N, Meng JJ, Zhou BB, Li SJ. An electrochemical aptasensor for sensitive and selective detection of dopamine based on signal amplification of electrochemical-chemical redox cycling. J Electroanal Chem. 2016;775:58–63.

    CAS  Google Scholar 

  42. Al-Graiti W, Yue Z, Foroughi J, Huang XF, Wallace G, Baughman R, et al. Probe sensor using nanostructured multi-walled carbon nanotube yarn for selective and sensitive detection of dopamine. Sensors. 2017;17(4):884.

  43. Choo SS, Kang ES, Song I, Lee D, Choi JW, Kim TH. Electrochemical detection of dopamine using 3D porous graphene oxide/gold nanoparticle composites. Sensors. 2017;17(4):861.

  44. Zhang L, Cheng Y, Lei J, Liu Y, Hao Q, Ju H. Stepwise chemical reaction strategy for highly sensitive electrochemiluminescent detection of dopamine. Anal Chem. 2013;85(16):8001–7.

    CAS  PubMed  Google Scholar 

  45. Ngo KT, Varner EL, Michael AC, Weber SG. Monitoring dopamine responses to potassium ion and nomifensine by in vivo microdialysis with online liquid chromatography at one-minute resolution. ACS Chem Neurosci. 2017;8(2):329–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Yoshimoto K, McBride WJ, Lumeng L, Li TK. Ethanol enhances the release of dopamine and serotonin in the nucleus accumbens of HAD and LAD lines of rats. Alcohol Clin Exp Res. 1992;16(4):781–5.

    CAS  PubMed  Google Scholar 

  47. Carboni E, Silvagni A, Valentini V, Di Chiara G. Effect of amphetamine, cocaine and depolarization by high potassium on extracellular dopamine in the accumbens shell of SHR rats. An in vivo microdyalisis study. Neurosci Biobehav Rev. 2003;27(7):653–9.

    CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Project No. 21605047), Natural Science Foundation of Hunan Province (Project No. 2017JJ3080), and Science and Technology Planning Project of Hunan Province (Project No. 17C0627).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hui Gu or Jian He.

Ethics declarations

All the experiments involving rats were carried out with the approval of the Animal Ethics Committee in East China Normal University. All the surgery and testing were performed in accordance with the recommendations of the International Association for the Study of Pain. All studies involving animals were in compliance with the ARRIVE guidelines.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 309 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, H., Guo, Y., Xiao, X. et al. Double molecular recognition strategy based on boronic acid–diol and NHS ester–amine for selective electrochemical detection of cerebral dopamine. Anal Bioanal Chem 412, 3727–3736 (2020). https://doi.org/10.1007/s00216-020-02624-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-02624-6

Keywords

Navigation