Skip to main content
Log in

Contribution of ketone/aldehyde-containing compounds to the composition and optical properties of Suwannee River fulvic acid revealed by ultrahigh resolution mass spectrometry and deuterium labeling

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A prior method of mass labeling ketone-/aldehyde-containing species in natural dissolved organic matter (DOM) is further developed and applied. This application involved the treatment of Suwannee River fulvic acid (SRFA) with increasing concentrations of sodium borodeuteride (NaBD4), followed by detection of reduced species via negative mode electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FTICR MS). The extent of reduction, as determined by ESI FTICR MS, resulting from increasing concentrations of NaBD4 correlated well with changes in the absorption and emission spectra of the corresponding untreated and borodeuteride-reduced samples, providing evidence that ketone/aldehyde functional groups contribute substantially to the bulk optical properties of SRFA. Furthermore, the differences in the reactivity and abundance of ketone-/aldehyde-containing species for various regions in Van Krevelen plots were revealed, thus showing how this mass labeling method can be used to provide more detailed structural information about components within complex DOM samples than that provided by the determination and analysis of molecular formulae alone.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Salonen K, Hammar T. On the importance of dissolved organic matter in the nutrition of zooplankton in some lake waters. Oecologia. 1986;68:246–53.

    Article  PubMed  Google Scholar 

  2. Blough NV, Del Vecchio R. Chromophoric DOM in the coastal environment. In: Hansell DA, Carlson CA, editors. Biogeochem. San Diego: Academic; 2002.

    Google Scholar 

  3. Coble PG. Marine optical biogeochemistry: the chemistry of ocean color. Chem Rev. 2007;107:402–18. https://doi.org/10.1021/cr050350+.

    Article  CAS  PubMed  Google Scholar 

  4. Zepp RG, Erickson DJ III, Paul ND, Sulzberger B. Interactive effects of solar UV radiation and climate change on biogeochemical cycling. Photochem Photobiol Sci. 2007;6:286. https://doi.org/10.1039/b700021a.

    Article  CAS  PubMed  Google Scholar 

  5. Morris DP, Hargreaves BR. The role of photochemical degradation of dissolved organic carbon in regulating the UV transparency of three lakes on the Pocono Plateau. Limnol Oceanogr. 1997;42:239–249.

  6. Nelson NB, Siegel DA. Chapter 11 - Chromophoric DOM in the Open Ocean. In: Biogeochemistry of marine dissolved organic matter. 2002;pp 547–VI.

  7. Zepp RG, Erickson DJ III, Paul ND, Sulzberger B. Interactive effects of solar UV radiation and climate change on biogeochemical cycling. Photochem Photobiol Sci. 2007:286–300. https://doi.org/10.1039/b700021a.

  8. Scully NM, Cooper WJ, Tranvik LJ. Photochemical effects on microbial activity in natural waters: the interaction of reactive oxygen species and dissolved organic matter. FEMS Microbiol Ecol. 2003;46:353–7. https://doi.org/10.1016/S0168-6496(03)00198-3.

    Article  CAS  PubMed  Google Scholar 

  9. Berg SM, Whiting QT, Herrli JA, Winkels R, Wammer KH, Remucal CK. The role of dissolved organic matter composition in determining photochemical reactivity at the molecular level. Environ Sci Technol. 2019;53:11725–34.

    Article  CAS  PubMed  Google Scholar 

  10. Boyle ES, Guerriero N, Thiallet A, Del Vecchio R, Blough NV. Optical properties of humic substances and CDOM: relation to structure. Environ Sci Technol. 2009;43:2262–8.

    Article  CAS  PubMed  Google Scholar 

  11. Del Vecchio R, Blough NV. On the origin of the optical properties of humic substances. Environ Sci Technol. 2004;38:3885–91.

    Article  CAS  PubMed  Google Scholar 

  12. Schendorf TM, Del Vecchio R, Bianca M, Blough NV. Combined effects of pH and borohydride reduction on optical properties of humic substances (HS): a comparison of optical models. Environ Sci Technol. 2019;53:6310–9.

    Article  CAS  PubMed  Google Scholar 

  13. Sharpless CM, Blough NV. The importance of charge-transfer interactions in determining chromophoric dissolved organic matter (CDOM) optical and photochemical properties. Environ Sci Process Impacts. 2014;16:654–71.

    Article  CAS  PubMed  Google Scholar 

  14. Tossell JA. Quinone–hydroquinone complexes as model components of humic acids: theoretical studies of their structure, stability and visible–UV spectra. Geochim Cosmochim Acta. 2009;73:2023–33.

    Article  CAS  Google Scholar 

  15. Balraj C, Satheshkumar A, Ganesh K, Elango KP. Charge transfer complexes of quinones in aqueous medium: spectroscopic and theoretical studies on interaction of cimetidine with novel substituted 1,4-benzoquinones and its application in colorimetric sensing of anions. Spectrochim Acta Part A Mol Biomol Spectrosc. 2013;114:256–66.

    Article  CAS  Google Scholar 

  16. Abdulla HAN, Minor EC, Hatcher PG. Using two-dimensional correlations of 13C NMR and FTIR to investigate changes in the chemical composition of dissolved organic matter along an estuarine transect. Environ Sci Technol. 2010;44:8044–9.

    Article  CAS  PubMed  Google Scholar 

  17. Hertkorn N, Harir M, Koch BP, Michalke B, Schmitt-Kopplin P. High-field NMR spectroscopy and FTICR mass spectrometry: powerful discovery tools for the molecular level characterization of marine dissolved organic matter. Biogeosciences. 2013;10:1583–624.

    Article  CAS  Google Scholar 

  18. Janot N, Reiller PE, Korshin GV. Using spectrophotometric titrations to characterize humic acid reactivity at environmental concentrations. Environ Sci Technol. 2010;44:6782–8.

    Article  CAS  PubMed  Google Scholar 

  19. Reemtsma T, These A, Springer A, Linscheid M. Differences in the molecular composition of fulvic acid size fractions detected by size-exclusion chromatography-on line Fourier transform ion cyclotron resonance (FTICR-) mass spectrometry. Water Res. 2008;42:63–72.

    Article  CAS  PubMed  Google Scholar 

  20. Leenheer JA, Wilson MA, Malcolm RL. Presence and potential significance of aromatic-ketone groups in aquatic humic substances. Org Geochem. 1987;11:273–80.

    Article  CAS  Google Scholar 

  21. Macalady D, Walton-Day K. Redox chemistry and natural organic matter (NOM): geochemists’ dream, analytical chemists’ nightmare. In: Tratnyek PG, Grundi TJ, Haderlein SB, editors. Aquatic redox chemistry. ACS symposium series 1071. Washington, D. C: American Chemical Society; 2011. p. 85–111.

    Google Scholar 

  22. Ma J, Del Vecchio R, Golanoski KS, Boyle ES, Blough NV. Optical properties of humic substances and CDOM: effects of borohydride reduction. Environ Sci Technol. 2010;44:5395–402.

    Article  CAS  PubMed  Google Scholar 

  23. Zhang Y, Del Vecchio R, Blough NV. Investigating the mechanism of hydrogen peroxide photoproduction by humic substances. Environ Sci Technol. 2012;46:11836–43.

    Article  CAS  PubMed  Google Scholar 

  24. Andrew AA, Del Vecchio R, Subramaniam A, Blough NV. Chromophoric dissolved organic matter (CDOM) in the equatorial Atlantic Ocean: optical properties and their relation to CDOM structure and source. Mar Chem. 2013;148:33–43.

    Article  CAS  Google Scholar 

  25. Aeschbacher M, Graf C, Schwarzenbach RP, Sander M. Antioxidant properties of humic substances. Environ Sci Technol. 2012;46:4916–25. https://doi.org/10.1021/es300039h.

    Article  CAS  PubMed  Google Scholar 

  26. Baluha DR, Blough NV, Del Vecchio R. Selective mass labeling for linking the optical properties of chromophoric dissolved organic matter to structure and composition via ultrahigh resolution electrospray ionization mass spectrometry. Environ Sci Technol. 2013;47:9891–7. https://doi.org/10.1021/es402400j.

    Article  CAS  PubMed  Google Scholar 

  27. Gonsior M, Schmitt-Kopplin P, Bastviken D. Depth-dependent molecular composition and photo-reactivity of dissolved organic matter in a boreal lake under winter and summer conditions. Biogeosciences. 2013;10:6945–56.

    Article  CAS  Google Scholar 

  28. Gonsior M, Peake BM, Cooper WT, Podgorski D, D’Andrilli J, Dittmar T, et al. Characterization of dissolved organic matter across the Subtropical Convergence off the South Island, New Zealand. Mar Chem. 2011;123:99–110.

    Article  CAS  Google Scholar 

  29. Hertkorn N, Frommberger M, Witt M, Koch BP, Schmitt-Kopplin P, Perdue EM. Natural organic matter and the event horizon of mass spectrometry. Anal Chem. 2008;80:8908–19.

    Article  CAS  PubMed  Google Scholar 

  30. Koch BP, Dittmar T, Witt M, Kattner G. Fundamentals of molecular formula assignment to ultrahigh resolution mass data of natural organic matter. Anal Chem. 2007;79:1758–63.

    Article  CAS  PubMed  Google Scholar 

  31. Stenson AC, Marshall AG, Cooper WT. Exact masses and chemical formulas of individual Suwannee River fulvic acids from ultrahigh resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectra. Anal Chem. 2003;75:1275–84.

    Article  CAS  PubMed  Google Scholar 

  32. Cao D, Huang H, Hu M, Cui L, Geng F, Rao Z, et al. Comprehensive characterization of natural organic matter by MALDI- and ESI-Fourier transform ion cyclotron resonance mass spectrometry. Anal Chim Acta. 2015;866:48–58.

    Article  CAS  PubMed  Google Scholar 

  33. Mugo S, Bottaro C. Characterization of humic substances by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom. 2004;18:2375–82.

    Article  CAS  PubMed  Google Scholar 

  34. Brown TA, Jackson BA, Bythell BJ, Stenson AC. Benefits of multidimensional fractionation for the study and characterization of natural organic matter. J Chromatogr A. 2016;1470:84–96.

    Article  CAS  PubMed  Google Scholar 

  35. Kostyukevich Y, Kononikhin A, Popov I, Kharybin O, Perminova I, Konstantinov A, et al. Enumeration of labile hydrogens in natural organic matter by use of hydrogen/deuterium exchange Fourier transform ion cyclotron resonance mass spectrometry. Anal Chem. 2013;85:11007–13.

    Article  CAS  PubMed  Google Scholar 

  36. Gonsior M, Zwartjes M, Cooper WJ, Song W, Ishida KP, Tseng LY, et al. Molecular characterization of effluent organic matter identified by ultrahigh resolution mass spectrometry. Water Res. 2011;45:2943–53.

    Article  CAS  PubMed  Google Scholar 

  37. Dittmar T, Koch B, Hertkorn N, Kattner G. A simple and efficient method for the solid-phase extraction of dissolved organic matter (SPE-DOM) from seawater. Limnol Oceanogr Methods. 2008;6:230–5. https://doi.org/10.4319/lom.2008.6.230.

    Article  CAS  Google Scholar 

  38. Li Y, Harir M, Lucio M, Kanawati B, Smirnov K, Flerus R, et al. Proposed guidelines for solid phase extraction of Suwannee River dissolved organic matter. Anal Chem. 2016;88:6680–8.

    Article  CAS  PubMed  Google Scholar 

  39. Perdue EM, Green NW. Isobaric molecular formulae of C, H, and O—a view from the negative quadrants of van Krevelen space. Anal Chem. 2015;87:5079–85.

    Article  CAS  PubMed  Google Scholar 

  40. Green NW, Perdue EM. Fast graphically inspired algorithm for assignment of molecular formulae in ultrahigh resolution mass spectrometry. Anal Chem. 2015;87:5086–94.

    Article  CAS  PubMed  Google Scholar 

  41. Zepp RG, Sheldon WM, Moran MA. Dissolved organic fluorophores in southeastern US coastal waters: correction method for eliminating Rayleigh and Raman scattering peaks in excitation–emission matrices. Mar Chem. 2004;89:15–36.

    Article  CAS  Google Scholar 

  42. Rostad CE, Leenheer J a. Factors that affect molecular weight distribution of Suwannee river fulvic acid as determined by electrospray ionization/mass spectrometry. Anal Chim Acta. 2004;523:269–78.

    Article  CAS  Google Scholar 

  43. Hockaday WC, Purcell JM, Marshall AG, Baldock JA, Hatcher PG. Electrospray and photoionization mass spectrometry for the characterization of organic matter in natural waters: a qualitative assessment. Limnol Oceanogr. 2009;7:81–95.

    Article  Google Scholar 

  44. These A, Reemtsma T. Limitations of electrospray ionization of fulvic and humic acids as visible from size exclusion chromatography with organic carbon and mass spectrometric detection. Anal Chem. 2003;75:6275–81.

    Article  CAS  PubMed  Google Scholar 

  45. Herzsprung P, Hertkorn N, Von Tümpling W, Harir M, Friese K, Schmitt-kopplin P. Molecular formula assignment for dissolved organic matter (DOM) using high-field FT-ICR-MS: chemical perspective and validation of sulphur-rich organic components (CHOS) in pit lake samples. Anal Bioanal Chem. 2016;408:2461–9.

    Article  CAS  PubMed  Google Scholar 

  46. Kellerman AM, Dittmar T, Kothawala DN, Tranvik LJ. Chemodiversity of dissolved organic matter in lakes driven by climate and hydrology. Nat Commun. 2014;5:1–8.

    Article  CAS  Google Scholar 

  47. D’Andrilli J, Foreman CM, Marshall AG, McKnight DM. Characterization of IHSS pony lake fulvic acid dissolved organic matter by electrospray ionization fourier transform ion cyclotron resonance mass spectrometry and fluorescence spectroscopy. Org Geochem. 2013;65:19–28.

    Article  CAS  Google Scholar 

  48. Schendorf TM, Del Vecchio R, Koech K, Blough NV. A standard protocol for NaBH4 reduction of CDOM and HS. Limnol Oceanogr Methods. 2016;14:414–23.

    Article  CAS  Google Scholar 

  49. Phillips SM, Smith D. Light absorption by charge transfer complexes in brown carbon aerosols. Environ Sci Technol Lett. 2014;1:382–6. https://doi.org/10.1021/ez500263j.

    Article  CAS  Google Scholar 

  50. Phillips SM, Smith D. Further evidence for charge transfer complexes in brown carbon aerosols from excitation−emission matrix fluorescence spectroscopy. J Phys Chem A. 2015;119:4545–51.

    Article  CAS  PubMed  Google Scholar 

  51. Cartisano CM, Del Vecchio R, Bianca MR, Blough NV. Investigating the sources and structure of chromophoric dissolved organic matter (CDOM) in the North Pacific Ocean (NPO) utilizing optical spectroscopy combined with solid phase extraction and borohydride reduction. Mar Chem. 2018;204:20–35.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Mourad Harir for the assistance with mass spectrometry data acquisition.

Funding

This work was supported by the National Science Foundation grant (OCE-1357411) awarded to NVB and RDV.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neil V. Blough.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rossana Del Vecchio regrettably passed away on July 4, 2019.

Electronic supplementary material

ESM 1

(PDF 1550 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bianca, M.R., Baluha, D.R., Gonsior, M. et al. Contribution of ketone/aldehyde-containing compounds to the composition and optical properties of Suwannee River fulvic acid revealed by ultrahigh resolution mass spectrometry and deuterium labeling. Anal Bioanal Chem 412, 1441–1451 (2020). https://doi.org/10.1007/s00216-019-02377-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-019-02377-x

Keywords

Navigation