Skip to main content
Log in

Fabrication of silver nanoclusters with enhanced fluorescence triggered by ethanol solvent: a selective fluorescent probe for Cr3+ detection

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

We present a facile method for the preparation of red-emitting and water-soluble silver nanoclusters (Ag NCs) using dihydrolipoic acid and sodium borohydride as the template and reducing agent. Ethanol solvent is demonstrated to endow Ag NCs with dramatically enhanced fluorescence; therefore, the Ag NCs are synthesized in ethanol/water solution (e/w-Ag NCs) instead of aqueous solution. Specific trivalent chromium (Cr3+) recognition capability of the e/w-Ag NCs can thus be obtained on the basis of its fluorescence quenching. The mechanisms for fluorescence enhancement and quenching of the e/w-Ag NCs triggered by ethanol and Cr3+, respectively, are investigated in detail. Next, a fluorescence method for detection of Cr3+ is established and its analytical performance is evaluated: the detection limit for Cr3+ is 0.71 μM and the linear range is from 2 to 40 μM. The fluorescent probe exhibits sufficient sensitivity and good selectivity toward Cr3+, illustrating that it has great promise for practical application in Cr3+ detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hassanien MM, Kenawy IM, El-Menshawy AM, El-Asmy AA. A novel method for speciation of Cr(III) and Cr(VI) and individual determination using Duolite C20 modified with active hydrazine. J Hazard Mater. 2008;158:170–6.

    Article  CAS  PubMed  Google Scholar 

  2. Latmani RB, Obraztsova A, Mackey MR, Ellisman MH, Tebo BM. Toxicity of Cr(III) to Shewanella sp. strain MR-4 during Cr(VI) reduction. Environ Sci Technol. 2007;41:214–20.

    Article  CAS  Google Scholar 

  3. Eastmond DA, MacGregor JT, Slesinski RS. Trivalent chromium: assessing the genotoxic risk of an essential trace element and widely used human and animal nutritional supplement. Crit Rev Toxicol. 2008;38:173–90.

    Article  CAS  PubMed  Google Scholar 

  4. Zhou Y, Zhang J, Zhang L, Zhang Q, Ma T, Niu J. A rhodamine-based fluorescent enhancement chemosensor for the detection of Cr3+ in aqueous media. Dyes and Pigments. 2013;97:148–54.

    Article  CAS  Google Scholar 

  5. Peralta-Videa JR, Lopez ML, Narayan M, Saupe G, Gardea-Torresdey J. The biochemistry of environmental heavy metal uptake by plants: implications for the food chain. Int J Biochem Cell B. 2009;41:1665–77.

    Article  CAS  Google Scholar 

  6. Cathum S, Brown CE, Wong W. Determination of Cr3+,CrO4 2–, and Cr2O7 2– in environmental matrixes by high-performance liquid chromatography with diode-array detection (HPLC–DAD). Anal Bioanal Chem. 2002;373:103–10.

    Article  CAS  PubMed  Google Scholar 

  7. Ganjali MR, Emami M, Salavati-Niasari M, Yousefi M. Determination of trace amounts of Cr(III) in presence of Cr(VI) by a novel potentiometric membrane sensor based on a new tridentate S,N,O Schiff's base. Anal Lett. 2003;36:2735–47.

    Article  CAS  Google Scholar 

  8. Tunçeli A, Türker AR. Speciation of Cr(III) and Cr(VI) in water after preconcentration of its 1,5-diphenylcarbazone complex on amberlite XAD-16 resin and determination by FAAS. Talanta. 2002;57:1199–204.

    Article  PubMed  Google Scholar 

  9. Kaewkhomdee N, Mounicou S, Szpunar J, Lobinski R, Shiowatana J. Characterization of binding and bioaccessibility of Cr in Cr-enriched yeast by sequential extraction followed by two-dimensional liquid chromatography with mass spectrometric detection. Anal Bioanal Chem. 2010;396:1355–64.

    Article  CAS  PubMed  Google Scholar 

  10. Shellaiah M, Simon T, Sun KW, Ko FH. Simple bare gold nanoparticles for rapid colorimetric detection of Cr3+ ions in aqueous medium with real sample applications. Sens Actuators B. 2016;226:44–51.

    Article  CAS  Google Scholar 

  11. Boonmee C, Noipa T, Tuntulani T, Ngeontae W. Cysteamine capped CdS quantum dots as a fluorescence sensor for the determination of copper ion exploiting fluorescence enhancement and long-wave spectral shifts. Spectrochim Acta A. 2016;169:161–8.

    Article  CAS  Google Scholar 

  12. Wu YS, Li CY, Li YH, Tang JL, Liu D. A ratiometric fluorescent chemosensor for Cr3+ based on monomer–excimer conversion of a pyrene compound. Sens Actuators B. 2014;203:712–8.

    Article  CAS  Google Scholar 

  13. Wu S, Zhang K, Wang Y, Mao D, Liu X, Yu J, et al. A novel Cr3+ turn-on probe based on naphthalimide and BINOL framework. Tetrahedron Lett. 2014;55:351–3.

    Article  CAS  Google Scholar 

  14. Liu S, Lu F, Zhu JJ. Highly fluorescent Ag nanoclusters: microwave-assisted green synthesis and Cr3+ sensing. Chem Commun. 2011;47:2661–3.

    Article  CAS  Google Scholar 

  15. Zhang L, Wang E. Metal nanoclusters: New fluorescent probes for sensors and bioimaging. Nano Today. 2014;9:132–57.

    Article  CAS  Google Scholar 

  16. Zhang N, Si Y, Sun Z, Chen L, Li R, Qiao Y, et al. Rapid, selective, and ultrasensitive fluorimetric analysis of mercury and copper levels in blood using bimetallic gold–silver nanoclusters with “silver effect”-enhanced red fluorescence. Anal Chem. 2014;86:11714–21.

    Article  CAS  PubMed  Google Scholar 

  17. Feng L, Liu M, Liu H, Fan C, Cai Y, Chen L, et al. High-throughput and sensitive fluorimetric strategy for microRNAs in blood using wettable microwells array and silver nanoclusters with red fluorescence enhanced by metal organic frameworks. ACS Appl Mater. Interfaces. 2018;10:23647–56.

    Article  CAS  PubMed  Google Scholar 

  18. Yuan X, Yeow TJ, Zhang Q, Lee JY, Xie J. Highly luminescent Ag+ nanoclusters for Hg2+ ion detection. Nanoscale. 2012;4:1968–71.

    Article  CAS  PubMed  Google Scholar 

  19. Yuan Z, Cai N, Du Y, He Y, Yeung ES. Sensitive and selective detection of copper ions with highly stable polyethyleneimine-protected silver nanoclusters. Anal Chem. 2014;86:419–26.

    Article  CAS  PubMed  Google Scholar 

  20. Li D, Qiao Z, Yu Y, Tang J, He X, Shi H, et al. In situ fluorescence activation of DNA–silver nanoclusters as a label-free and general strategy for cell nucleus imaging. Chem Commun. 2018;54:1089–92.

    Article  CAS  Google Scholar 

  21. Adhikari B, Banerjee A. Facile synthesis of water-soluble fluorescent silver nanoclusters and HgII sensing. Chem Mater. 2010;22:4364–71.

    Article  CAS  Google Scholar 

  22. Li D, Chen Z, Yang T. Fluorescence enhancement of DHLA protected gold nanoclusters in the presence of salt. New J Chem. 2016;40:3781–5.

    Article  CAS  Google Scholar 

  23. Tang C, Feng H, Huang Y, Qian Z. Reversible luminescent nanoswitches based on aggregation-induced emission enhancement of silver nanoclusters for luminescence turn-on assay of inorganic pyrophosphatase activity. Anal Chem. 2017;89:4994–5002.

    Article  CAS  PubMed  Google Scholar 

  24. Ren SH, Liu SG, Ling Y, Li NB, Luo HQ. Fluorescence detection of melamine based on inhibiting Cu2+-induced disaggregation of red-emitting silver nanoclusters. Spectrochim Acta A. 2018;201:112–8.

    Article  CAS  Google Scholar 

  25. Naaz S, Chowdhury P. Sunlight and ultrasound-assisted synthesis of photoluminescent silver nanoclusters: a unique ‘knock out’ sensor for thiophilic metal ions. Sens Actuators B. 2017;241:840–8.

    Article  CAS  Google Scholar 

  26. Bayen SP, Mondal MK, Naaz S, Mondal SK, Chowdhury P. Design and sonochemical synthesis of water-soluble fluorescent silver nanoclusters for Hg2+ sensing. J Environ Chem Eng. 2016;4:1110–6.

    Article  CAS  Google Scholar 

  27. Lakowitz JR. Principles of fluorescence spectroscopy. 3rd ed. New York: Springer; 2006.

    Book  Google Scholar 

  28. Feng L, Sun Z, Liu H, Liu M, Jiang Y, Fan C, et al. Silver nanoclusters with enhanced fluorescence and specific ion recognition capability triggered by alcohol solvents: a highly selective fluorimetric strategy for detecting iodide ions in urine. Chem Commun. 2017;53:9466–9.

    Article  CAS  Google Scholar 

  29. Sung TW, Lo YL, Chang IL. Highly sensitive and selective fluorescence probe for Cr3+ ion detection using water-soluble CdSe QDs. Sens Actuators B. 2014;202:1349–56.

    Article  CAS  Google Scholar 

  30. Cheng Z. Studies on the interaction between scopoletin and two serum albumins by spectroscopic methods. J Lumin. 2012;132:2719–29.

    Article  CAS  Google Scholar 

  31. Mei J, Leung NL, Kwok RT, Lam JW, Tang BZ. Aggregation-induced emission: together we shine, united we soar! Chem Rev. 2015;115:11718–940.

    Article  CAS  PubMed  Google Scholar 

  32. Naaz S, Poddar S, Bayen SP, Mondal MK, Roy D, Mondal SK, et al. Tenfold enhancement of fluorescence quantum yield of water soluble silver nanoclusters for nano-molar level glucose sensing and precise determination of blood glucose level. Sens Actuators B. 2018;255:332–40.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (no. 21675131) and the Natural Science Foundation of Chongqing (no. CSTC-2015jcyjB50001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nian Bing Li or Hong Qun Luo.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 599 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, S.H., Liu, S.G., Ling, Y. et al. Fabrication of silver nanoclusters with enhanced fluorescence triggered by ethanol solvent: a selective fluorescent probe for Cr3+ detection. Anal Bioanal Chem 411, 3301–3308 (2019). https://doi.org/10.1007/s00216-019-01796-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-019-01796-0

Keywords

Navigation