Skip to main content
Log in

Non-invasive monitoring of blood glucose using optical methods for skin spectroscopy—opportunities and recent advances

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Diabetes mellitus is a widespread disease with greatly rising patient numbers expected in the future, not only for industrialized countries but also for regions in the developing world. There is a need for efficient therapy, which can be via self-monitoring of blood glucose levels to provide tight glycemic control for reducing the risks of severe health complications. Advancements in diabetes technology can nowadays offer different sensor approaches, even for continuous blood glucose monitoring. Non-invasive blood glucose assays have been promised for many years and various vibrational spectroscopy-based methods of the skin are candidates for achieving this goal. Due to the small spectral signatures of the glucose hidden among a largely variable background, the largest signal-to-noise ratios and multivariate calibration are essential to provide the method applicability for self-monitoring of blood glucose. Besides multiparameter approaches, recently presented devices based on photoplethysmography with wavelengths in the visible and near-infrared range are evaluated for their potential of providing reliable blood glucose concentration predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. The Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 1993;329(14):977–86.

    Article  Google Scholar 

  2. The Juvenile Diabetes Research Foundation Continuous Glucose Monitoring Study Group. Continuous glucose monitoring and intensive treatment of type 1 diabetes. N Engl J Med. 2008;359(14):1464–76.

    Article  Google Scholar 

  3. American Diabetes Association. Glycemic targets: standards of medical care in diabetes—2018. Diabetes Care. 2018; https://doi.org/10.2337/dc18-S006

  4. Chamberlain JJ, Rhinehart AS, Shaefer CF Jr, Neuman A. Diagnosis and management of diabetes: synopsis of the 2016 American Diabetes Association Standards of Medical Care in Diabetes. Ann Intern Med. 2016;164(8):542–52.

    Article  PubMed  Google Scholar 

  5. National Institute for Health Research. New and emerging non-invasive glucose monitoring technologies. In: Horizon Scanning Research & Intelligence Centre. University of Birmingham. 2016. http://www.opticology.com/NIHR-HSRIC-NIGM-Horizon-Scanning-Review-May-2016.pdf. Accessed 11 July 2018.

  6. Corabian P, Chojecki D. Exploratory brief on glucose monitoring technologies. In: IHE report. Institute of Health and Economics. 2017. https://www.ihe.ca/publications/exploratory-brief-on-glucose-monitoring-technologies. Accessed 11 July 2018.

  7. Cappon G, Acciaroli G, Vettoretti M, Facchinetti A, Sparacino G. Wearable continuous glucose monitoring sensors: a revolution in diabetes treatment. Electronics. 2017;6(3):65.

    Article  Google Scholar 

  8. Kim J, Campbell AS, Wang J. Wearable non-invasive epidermal glucose sensors: a review. Talanta. 2018;177:163–70.

    Article  CAS  PubMed  Google Scholar 

  9. Acciaroli G, Vettoretti M, Facchinetti A, Sparacino G. Calibration of minimally invasive continuous glucose monitoring sensors: state-of-the-art and current perspectives. Biosensors. 2018;8(1):E24.

    Article  PubMed  Google Scholar 

  10. Lin T, Gal A, Mayzel Y, Horman K, Bahartan K. Non-invasive glucose monitoring: a review of challenges and recent advances. Curr Trends Biomedical Eng Biosci. 2017;6(5) CTBEB.MS.ID):555696. https://doi.org/10.19080/CTBEB.2017.06.555696.

    Article  Google Scholar 

  11. Uwadaira Y, Ikehata A. Noninvasive blood glucose measurement. In: Bagchi D, Nair S, editors. Nutritional and therapeutic interventions for diabetes and metabolic syndrome. 3rd ed. New York: Elsevier; 2018. p. 489–504.

    Chapter  Google Scholar 

  12. Smith JL, The pursuit of noninvasive glucose: “hunting the deceitful turkey,” 6th edition; https://www.researchgate.net/publication/327101583_The_Pursuit_of_Noninvasive_Glucose_Hunting_the_Deceitful_Turkey_Sixth_Edition; Accessed 16 Sept 2018.

  13. Vahlsing T, Delbeck S, Leonhardt S, Heise HM. Noninvasive monitoring of blood glucose using color-coded photoplethysmographic images of the illuminated fingertip within the visible and near-infrared range: opportunities and questions. J Diabetes Sci Technol 2018; online first, doi: https://doi.org/10.1177/1932296818798347

  14. Dehennis A, Mortellaro MA, Ioacara S. Multisite study of an implanted continuous glucose sensor over 90 days in patients with diabetes mellitus. J Diabetes Sci Technol. 2015;9(5):951–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Caduff A, Zanon M, Zakharov P, Mueller M, Talary M, Krebs A, et al. First experiences with a wearable multisensory in an outpatient glucose monitoring study, part I: the user’s view. J Diabetes Sci Technol. 2018;12(3):562–8.

    Article  PubMed  Google Scholar 

  16. Zanon M, Mueller M, Zakharov P, Talary M, Donath M, Stahel WA, et al. First experiences with a wearable multisensor device in a noninvasive continuous glucose monitoring study at home, part II: the investigator’s view. J Diabetes Sci Technol. 2018;12(3):554–61.

    Article  PubMed  Google Scholar 

  17. Liu R, Chen W, Gu X, Wang RK, Xu K. Chance correlation in non-invasive glucose measurement using near-infrared spectroscopy. J Phys D Appl Phys. 2005;38:2675–81.

    Article  CAS  Google Scholar 

  18. Zhang W, Liu R, Zhang W, Jia H, Xu K. Discussion on the validity of NIR spectral data in non-invasive blood glucose sensing. Biomed Optics Exp. 2013;4:789–802.

    Article  CAS  Google Scholar 

  19. Heise HM, Lampen P, Marbach R. Near-infrared reflection spectroscopy for non-invasive monitoring of glucose—established and novel strategies for multivariate calibration. In: Tuchin VV, editor. Handbook of optical sensing of glucose in biological fluids and tissues. Boca Raton: CRC Press; 2009. p. 115–56.

    Google Scholar 

  20. Arnold MA, Small GW. Noninvasive glucose sensing. Anal Chem. 2005;77(17):5429–39.

    Article  CAS  PubMed  Google Scholar 

  21. Parkes JL, Slatin SL, Pardo S, Ginsberg BH. A new consensus error grid to evaluate the clinical significance of inaccuracies in the measurement of blood glucose. Diabetes Care. 2000;23(8):1143–8.

    Article  CAS  PubMed  Google Scholar 

  22. Jendrike N, Baumstark A, Kamecke U, Haug C, Freckmann G. ISO 15197: 2013 evaluation of a blood glucose monitoring system’s measurement accuracy. J Diabetes Sci Technol. 2017;11(6):1275–6.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Pfützner A, Strobl S, Demircik F, Redert L, Pfützner J, Pfützner AH, Lier A. Evaluation of a new noninvasive glucose monitoring device by means of standardized meal experiments. J Diabetes Sci Technol. 2018, Online First; https://doi.org/10.1177/1932296818758769.

  24. Breton MD, Kovatchev BP. Impact of blood glucose self-monitoring errors on glucose variability, risk for hypoglycaemia, and average glucose control in type 1 diabetes: an in silico study. J Diabetes Sci Technol. 2010;4(3):562–70.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Heise HM. Glucose measurements by vibrational spectroscopy. In: Chalmers JM, Griffiths PR, editors. Handbook of vibrational spectroscopy, Vol. 5 (Applications in Life, Pharmaceutical and Natural Sciences). Chichester: Wiley; 2002. p. 3280–94.

    Google Scholar 

  26. Heise HM, Marbach R. Human oral mucosa studies with varying blood glucose concentration by non-invasive ATR-FT-IR-spectroscopy. Cell Mol Biol. 1998;44(6):899–912.

    CAS  PubMed  Google Scholar 

  27. Amerov AK, Chen J, Arnold MA. Molar absorptivities of glucose and other biological molecules in aqueous solutions over the first overtone and combination regions of the near-infrared spectrum. Appl Spectrosc. 2004;58(10):1195–204.

    Article  CAS  PubMed  Google Scholar 

  28. Heise HM. Near-infrared spectrometry for in vivo glucose sensing. In: Fraser DM, editor. Biosensors in the body: continuous in vivo monitoring. Chichester: John Wiley & Sons; 1997. p. 79–116.

    Google Scholar 

  29. Norris KH. Possible medical applications of NIR. In: Murray I, Cowe IA, editors. Making light work: advances in near infrared spectroscopy. Weinheim: Wiley-VCH; 1992. p. 596.

    Google Scholar 

  30. Kohl M, Essenpreis M, Cope M. The influence of glucose concentration upon the transport of light in tissue-simulating phantoms. Phys Med Biol. 1995;40(7):1267–87.

    Article  CAS  PubMed  Google Scholar 

  31. Pandey R, Paidi SK, Valdez TA, Zhang C, Spegazzini N, Dasari RR, et al. Noninvasive monitoring of blood glucose with Raman spectroscopy. Acc Chem Res. 2017;50(2):264–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Barman I, Kong C-R, Singh GP, Dasari RR, Feld MS. An accurate spectroscopic calibration for non-invasive glucose monitoring by modelling the physiological glucose dynamics. Anal Chem. 2010;82:6104–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Shih WC, Bechtel KL, Rebec MV. Noninvasive glucose sensing by transcutaneous Raman spectroscopy. J Biomed Opt. 2015;20(5):051036.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Mäntele W, Hertzberg O, Bauer A, Küderle A, Pleitez MA. Depth-selective photothermal IR spectroscopy of skin: potential application for non-invasive glucose measurement. Analyst. 2017;142(3):495–502.

    Article  PubMed  Google Scholar 

  35. Mäntele W, Bauer A, Hertzberg O, Küderle A, Strobel D, Pleitez MA. IR-spectroscopy of skin in vivo: optimal skin sites and properties for non-invasive glucose measurement by photoacoustic and photothermal spectroscopy. J Biophotonics. 2018;11(1):e201600261.

    Article  Google Scholar 

  36. Werth A, Liakat S, Dong A, Woods CM, Gmachl CF. Implementation of an integrating sphere for the enhancement of noninvasive glucose detection using quantum cascade laser spectroscopy. Appl Phys B Lasers Opt. 2018;124:75. https://doi.org/10.1007/s00340-018-6946-5.

    Article  CAS  Google Scholar 

  37. Clarke WL. The original Clarke error grid analysis (EGA). Diabetes Technol Ther. 2005;7(5):776–9.

    Article  PubMed  Google Scholar 

  38. Schönhals A, Tholl H, Glasmacher M, Kröger-Lui N, Rucci A, Petrich W. Optical properties of porcine dermis in the mid-infrared absorption band of glucose. Analyst. 2017;142(8):1235–43.

    Article  PubMed  Google Scholar 

  39. Marbach R, Koschinsky T, Gries A, Heise HM. Noninvasive blood glucose assay by near-infrared diffuse reflectance spectroscopy of the human inner lip. Appl Spectrosc. 1993;47(7):875–81.

    Article  CAS  Google Scholar 

  40. Knobbe EJ, Buckingham B. The extended Kalman filter for continuous glucose monitoring. Diabetes Technol Ther. 2005;7(1):15–27.

    Article  CAS  PubMed  Google Scholar 

  41. Koutny T. Blood glucose level reconstruction as a function of transcapillary glucose transport. Comput Biol Med. 2014;53:171–8.

    Article  CAS  PubMed  Google Scholar 

  42. Cobelli C, Schiavon M, Man CD, Basu A, Basu R. Interstitial fluid glucose is not just a shifted-in-time but a distorted mirror of blood glucose: insight from an in silico study. Diabetes Technol Ther. 2016;18(8):505–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Xu J, Huang P, Qin Y, Jiang D, Chen H-Y. Analysis of intracellular glucose at single cells using electrochemiluminescence imaging. Anal Chem. 2016;88(9):4609–12.

    Article  CAS  PubMed  Google Scholar 

  44. Heise HM. In vivo assay of glucose. In: Meyers RA, editor. Encyclopedia of analytical chemistry: instrumentation and applications, Vol.1. Chichester: Wiley; 2000. p. 56–83.

    Google Scholar 

  45. Heise HM, Haiber S, Licht M, Ihrig DF, Moll C, Stücker M. Recent progress in non-invasive diabetes screening by diffuse reflectance near-infrared skin spectroscopy. Proc of SPIE. 2006;6093(609310):1–9.

    Google Scholar 

  46. Qu J, Wilson BC. Monte Carlo modeling studies of the effect of physiological factors and other analytes on the determination of glucose concentration in vivo by near infrared optical absorption and scattering measurements. J Biomed Opt. 1997;2(3):319–25.

    Article  CAS  PubMed  Google Scholar 

  47. Tarumi M, Shimada M, Murakami T, Tamura M, Shimada M, Arimoto H, et al. Simulation study of in vitro glucose measurement by NIR spectroscopy and a method of error reduction. Phys Med Biol. 2003;48(15):2373–90.

    Article  CAS  PubMed  Google Scholar 

  48. Marbach R, Heise HM. On the efficiency of algorithms for multivariate linear calibration used in analytical spectroscopy. TrAC Trends Anal Chem. 1992;11(8):270–5.

    Article  CAS  Google Scholar 

  49. Olesberg JT, Liu L, Van Zee V, Arnold MA. In vivo near-infrared spectroscopy of rat skin tissue with varying blood glucose levels. Anal Chem. 2006;78(1):215–23.

    Article  CAS  PubMed  Google Scholar 

  50. Arnold MA, Liu L, Olesberg JT. Selectivity assessment of noninvasive glucose measurements based on the analysis of multivariate calibration vectors. J Diabetes Sci Technol. 2007;1(4):454–62.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Arnold MA, Alexeeva NV. Impact of tissue heterogeneity on noninvasive near-infrared glucose measurements in interstitial fluid of rat skin. J Diabetes Sci Technol. 2010;4(5):1041–54.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Heise HM, Marbach R, Bittner A, Koschinsky T. Clinical chemistry and near-infrared spectroscopy: multicomponent assay for human plasma and its evaluation for the determination of blood substrates. J Near Infrared Spectrosc. 1998;6(1):361–74.

    Article  CAS  Google Scholar 

  53. Heise HM, Bittner A, Marbach R. Near-infrared reflectance spectroscopy for non-invasive monitoring of metabolites. Clin Chem Lab Med. 2000;38(2):137–45.

    Article  CAS  PubMed  Google Scholar 

  54. Maruo K, Yamada Y. Near-infrared noninvasive blood glucose prediction without using multivariate analyses: introduction of imaginary spectra due to scattering change in the skin. J Biomed Opt. 2015;20(4):047003.

    Article  PubMed  Google Scholar 

  55. Uwadaira Y, Adachi N, Ikehata A, Kawano S. Factors affecting the accuracy of non-invasive blood glucose measurements by short-wavelength near infrared spectroscopy in the determination of the glycaemic index of foods. J Near Infrared Spectrosc. 2010;18(5):291–300.

    Article  CAS  Google Scholar 

  56. Bae J, Druzhin VV, Anikanov AG, Afanasyev SV, Shchekin A, Medvedev AS, Morozov AV, Kim D, Kim SK, Moon H, Jang H, Shim J, Park J. A miniaturized near infrared spectrometer for non-invasive sensing of bio-markers as a wearable healthcare solution. Proc. SPIE 10116, MOEMS and Miniaturized Systems XVI. 2017; https://doi.org/10.1117/12.2256293

  57. Tamura T, Maeda Y, Sekine M, Yoshida M. Wearable photoplethysmographic sensors—past and present. Electronics. 2014;3(2):282–302.

    Article  Google Scholar 

  58. Sidorov IS, Romashko RV, Koval VT, Giniatullin R, Kamshilin AA. Origin of infrared light modulation in reflectance-mode photoplethysmography. PLoS One. 2016;11(10):e0165413.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Sangiorgi S, Manelli A, Congiu T, Bini A, Pilato G, Reguzzoni M, et al. Microvascularization of the human digit as studied by corrosion casting. J Anat. 2004;204(2):123–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Elgendi M. On the analysis of fingertip photoplethysmogram signals. Curr Cardiol Rev. 2012;8(1):14–25.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Yamakoshi Y, Matsumura K, Yamakoshi T, Lee J, Rolfe P, Kato Y, et al. Side-scattered finger-photoplethysmography: experimental investigations toward practical noninvasive measurement of blood glucose. J Biomed Optics. 2017;22(6):67001.

    Article  Google Scholar 

  62. Ramasahayam S, Arora L, Chowdhury SR. FPGA based smart system for non invasive blood glucose sensing using photoplethysmography and online correction of motion artifact. In: Postolache OA, et al., editors. Sensors for everyday life. Basel: Springer International Publishing; 2017. p. 1–21.

    Google Scholar 

  63. Monte-Moreno E. Non-invasive estimate of blood glucose and blood pressure from a photoplethysmograph by means of machine learning techniques. Artif Intell Med. 2011;53(2):127–38.

    Article  PubMed  Google Scholar 

  64. Segman Y. Device and method for noninvasive glucose assessment. J Diabetes Sci Technol. 2018, Online First; https://doi.org/10.1177/1932296818763457.

  65. Keske MA, Dwyer RM, Russel RD, Blackwood SJ, Brown AA, Hu D, et al. Regulation of microvascular flow and metabolism: an overview. Clin Exp Pharmacol Physiol. 2017;44(1):143–9.

    Article  CAS  PubMed  Google Scholar 

  66. Nishidate I, Tanaka N, Kawase T, Maeda T, Yuasa T, Aizu Y, et al. Noninvasive imaging of human skin hemodynamics using a digital red-green-blue camera. J Biomed Opt. 2011;16(8):086012.

    Article  PubMed  Google Scholar 

  67. Segman Y. New method for computing optical hemodynamic blood pressure. J Clin Exp Cardiolog. 2016;7:492.

    Google Scholar 

  68. Ji W, Rhodes PA. Spectral color characterization of digital cameras: a review. Proc. SPIE 8332, Optoelectronic Sensing and Imaging. 2012; https://doi.org/10.1117/12.915768

  69. Park C, Kang MG. Color restoration of RGBN multispectral filter array sensor images based on spectral decomposition. Sensors (Basel). 2016;16(5):719.

    Article  Google Scholar 

  70. Petrov GI, Doronin A, Whelan HT, Meglinski I, Yakovlev VV. Human tissue color as viewed in high dynamic range optical spectral transmission measurements. Biomed Opt Express. 2012;3(9):2154–61.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Pfützner A, Klonoff DC, Pardo S, Parkes JL. Technical aspects of the Parkes error grid. J Diabetes Sci Technol. 2013;7(5):1275–80.

    Article  PubMed  PubMed Central  Google Scholar 

  72. DIN EN ISO15197:2015: In vitro diagnostic test systems—requirements for blood glucose monitoring systems for self-testing in managing diabetes mellitus (Engl. version ISO 15197:2013).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Michael Heise.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Delbeck, S., Vahlsing, T., Leonhardt, S. et al. Non-invasive monitoring of blood glucose using optical methods for skin spectroscopy—opportunities and recent advances. Anal Bioanal Chem 411, 63–77 (2019). https://doi.org/10.1007/s00216-018-1395-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-1395-x

Keywords

Navigation