Skip to main content

Advertisement

Log in

Quantification of BSA-loaded chitosan/oligonucleotide nanoparticles using reverse-phase high-performance liquid chromatography

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Therapeutic proteins are administered subcutaneously because of their instability in the gastrointestinal tract. Current research suggests that polymeric-based nanoparticles, microparticles and liposomes are ideal nanocarriers to encapsulate proteins for disease management. In order to develop a successful drug delivery system, it is crucial to determine drug release profile and stability. However, the non-active excipients in polymeric formulations can influence the quantification of proteins in analytical techniques. This study investigated the effect of nine common polymers on quantification of bovine serum albumin (BSA) using RP-HPLC method. The technique offers advantages such as short analytical time, high accuracy and selectivity. In the meantime, the technique can be employed to separate proteins including BSA, insulin and pigment epithelium-derived factor (PEDF). Furthermore, the RP-HPLC method was applied to quantify the drug release pattern of a novel BSA-loaded nanoparticulate formulation in simulated gastric and intestinal fluids. The nanoparticles were formulated by natural polymer (chitosan) and oligonucleotide (Dz13Scr) using complex coacervation. The prepared particles were found to have small size (337.87 nm), low polydispersity index (0.338) and be positively charged (10.23 mV). The in vitro drug release patterns were characterised using the validated RP-HPLC method over 12 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wong CY, Martinez J. Dass CR. Oral delivery of insulin for treatment of diabetes: status quo, challenges and opportunities. J Pharm Pharmacol. 2016;68:1093–108.

    Article  CAS  PubMed  Google Scholar 

  2. Wong CY, Al-Salami H, Dass CR. Potential of insulin nanoparticle formulations for oral delivery and diabetes treatment. J Control Release. 2017;264:247–75.

    Article  CAS  PubMed  Google Scholar 

  3. Wong CY, Al-Salami H, Dass CR. Microparticles, microcapsules and microspheres: a review of recent developments and prospects for oral delivery of insulin. Int J Pharm. 2018;537:223–44.

    Article  CAS  PubMed  Google Scholar 

  4. Wong CY, Al-Salami H, Dass CR. The role of chitosan on oral delivery of peptide-loaded nanoparticle formulation. J Drug Target. 2017;1:1–12.

    CAS  Google Scholar 

  5. Mollmann SH, Jorgensen L, Bukrinsky JT, Elofsson U, Norde W, Frokjaer S. Interfacial adsorption of insulin conformational changes and reversibility of adsorption. Eur J Pharm Sci. 2006;27:194–204.

    Article  CAS  PubMed  Google Scholar 

  6. Alpert AJ, Petritis K, Kangas L, Smith RD, Mechtler K, Mitulovic G, et al. Peptide orientation affects selectivity in ion-exchange chromatography. Anal Chem. 2010;82:5253–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tantipolphan R, Rades T, McQuillan AJ, Medlicott NJ. Adsorption of bovine serum albumin (BSA) onto lecithin studied by attenuated total reflectance fourier transform infrared (ATR-FTIR) spectroscopy. Int J Pharm. 2007;337:40–7.

    Article  CAS  PubMed  Google Scholar 

  8. Nexø E. A new principle in biospecific affinity chromatography used for purification of cobalamin-binding proteins. Biochim Biophys Acta. 1975;379:189–92.

    Article  PubMed  Google Scholar 

  9. Lim LW, Tomatsu M, Takeuchi T. Development of an on-line immobilized-enzyme reversed-phase HPLC method for protein digestion and peptide separation. Anal Bioanal Chem. 2006;386:614–20.

    Article  CAS  PubMed  Google Scholar 

  10. Elrassi Z, Horvath C. Metal chelate-interaction chromatography of proteins with iminodiacetic acid-bonded stationary phases on silica support. J Chromatogr. 1986;359:241–53.

    Article  CAS  Google Scholar 

  11. Yin H, Killeen K, Brennen R, Sobek D, Werlich M, van de Goor T. Microfluidic chip for peptide analysis with an integrated HPLC column, sample enrichment column, and nanoelectrospray tip. Anal Chem. 2005;77(2):527–33. https://doi.org/10.1021/ac049068d.

    Article  CAS  PubMed  Google Scholar 

  12. Toll H, Oberacher H, Swart R, Huber CG. Separation, detection, and identification of peptides by ion-pair reversed-phase high-performance liquid chromatography-electrospray ionization mass spectrometry at high and low pH. J Chromatogr A. 2005;1079:274–86.

    Article  CAS  PubMed  Google Scholar 

  13. Zhao Y, Li F, Carvajal MT, Harris MT. Interactions between bovine serum albumin and alginate: an evaluation of alginate as protein carrier. J Colloid Interface Sci. 2009;332:345–53.

    Article  CAS  PubMed  Google Scholar 

  14. Qiao X, Wang L, Ma J, Deng Q, Liang Z, Zhang L, et al. High sensitivity analysis of water-soluble, cyanine dye labeled proteins by high-performance liquid chromatography with fluorescence detection. Anal Chim Acta. 2009;640:114–20.

    Article  CAS  PubMed  Google Scholar 

  15. Al-Salami H, Butt G, Tucker I, Mikov M. Influence of the semisynthetic bile acid (MKC) on the ileal permeation of gliclazide in healthy and diabetic rats. Pharmacol Rep. 2008;60(4):532–41.

    CAS  PubMed  Google Scholar 

  16. Clark MF, Adams A. Characteristics of the microplate method of enzyme-linked immunosorbent assay for the detection of plant viruses. J Gen Virol. 1977;34:475–83.

    Article  CAS  PubMed  Google Scholar 

  17. Wedege E, Svenneby G. Effects of the blocking agents bovine serum albumin and Tween 20 in different buffers on immunoblotting of brain proteins and marker proteins. J Immunol Methods. 1986;88:233–7.

    Article  CAS  PubMed  Google Scholar 

  18. Liu Y, Layrolle P, de Bruijn J, van Blitterswijk C, de Groot K. Biomimetic coprecipitation of calcium phosphate and bovine serum albumin on titanium alloy. J Biomed Mater Res A. 2001;57:327–35.

    Article  CAS  Google Scholar 

  19. Van der Valk J, Brunner D, De Smet K, Svenningsen ÅF, Honegger P, Knudsen LE, et al. Optimization of chemically defined cell culture media–replacing fetal bovine serum in mammalian in vitro methods. Toxicol in Vitro. 2010;24:1053–63.

    Article  PubMed  CAS  Google Scholar 

  20. Yin L, Wang Y, Wang C, Feng M. Nano-reservoir bioadhesive tablets enhance protein drug permeability across the small intestine. AAPS PharmSciTech. 2017;18:2329–35.

    Article  CAS  PubMed  Google Scholar 

  21. Harde H, Agrawal AK, Jain S. Development of stabilized glucomannosylated chitosan nanoparticles using tandem crosslinking method for oral vaccine delivery. Nanomedicine. 2014;9:2511–29.

    Article  CAS  PubMed  Google Scholar 

  22. Shastri PN, Ubale RV, D'Souza MJ. Implementation of mixture design for formulation of albumin containing enteric-coated spray-dried microparticles. Drug Dev Ind Pharm. 2013;39:164–75.

    Article  CAS  PubMed  Google Scholar 

  23. Harde H, Agrawal AK, Jain S. Trilateral '3P' mechanics of stabilized layersomes technology for efficient oral immunization. J Biomed Nanotechnol. 2015;11:363–81.

    Article  CAS  PubMed  Google Scholar 

  24. Tantisripreecha C, Jaturanpinyo M, Panyarachun B, Sarisuta N. Development of delayed-release proliposomes tablets for oral protein drug delivery. Drug Dev Ind Pharm. 2012;38:718–27.

    Article  CAS  PubMed  Google Scholar 

  25. Mayer JP, Zhang F, DiMarchi RD. Insulin structure and function. Biopolymers. 2007;88:687–713.

    Article  CAS  PubMed  Google Scholar 

  26. Pierre EJ, Barrow RE, Hawkins HK, Nguyen TT, Sakurai Y, Desai M, et al. Effects of insulin on wound healing. J Trauma Acute Care Surg. 1998;44:342–5.

    Article  CAS  Google Scholar 

  27. Fulzele K, Riddle RC, DiGirolamo DJ, Cao X, Wan C, Chen D, et al. Insulin receptor signaling in osteoblasts regulates postnatal bone acquisition and body composition. Cell. 2010;142:309–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Abdelkader DH, Osman MA, El-Gizawy SA, Hawthorne SJ, Faheem AM, PA MC. Effect of poly (ethylene glycol) on insulin stability and cutaneous cell proliferation in vitro following cytoplasmic delivery of insulin-loaded nanoparticulate carriers—a potential topical wound management approach. Eur J Pharm Sci. 2018;114:372–84.

    Article  CAS  PubMed  Google Scholar 

  29. Scudeller LA, Mavropoulos E, Tanaka MN, Costa AM, Braga CAC, Lopez EO, et al. Effects on insulin adsorption due to zinc and strontium substitution in hydroxyapatite. Mater Sci Eng C Mater Biol Appl. 2017;79:802–11.

    Article  CAS  PubMed  Google Scholar 

  30. Al-Remawi M, Elsayed A, Maghrabi I, Hamaidi M, Jaber N. Chitosan/lecithin liposomal nanovesicles as an oral insulin delivery system. Pharm Dev Technol. 2017;22:390–8.

    Article  CAS  PubMed  Google Scholar 

  31. Filleur S, Nelius T, De Riese W, Kennedy R. Characterization of PEDF: a multi-functional serpin family protein. J Cell Biochem. 2009;106(5):769–75.

    Article  CAS  PubMed  Google Scholar 

  32. Mori K, Duh E, Gehlbach P, Ando A, Takahashi K, Pearlman J, et al. Pigment epithelium-derived factor inhibits retinal and choroidal neovascularization. J Cell Physiol. 2001;188:253–63.

    Article  CAS  PubMed  Google Scholar 

  33. Rychli K, Huber K, Wojta J. Pigment epithelium-derived factor (PEDF) as a therapeutic target in cardiovascular disease. Expert Opin Ther Targets. 2009;13:1295–302.

    Article  CAS  PubMed  Google Scholar 

  34. Becerra SP, Notario V. The effects of PEDF on cancer biology: mechanisms of action and therapeutic potential. Nat Rev Cancer. 2013;13:258–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gattu AK, Swenson ES, Iwakiri Y, Samuel VT, Troiano N, Berry R, et al. Determination of mesenchymal stem cell fate by pigment epithelium-derived factor (PEDF) results in increased adiposity and reduced bone mineral content. FASEB J. 2013;27:4384–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Xu B, Jin Q, Zeng J, Yu T, Chen Y, Li S, et al. Combined tumor- and neovascular-"dual targeting" gene/chemo-therapy suppresses tumor growth and angiogenesis. ACS Appl Mater Interfaces. 2016;8:25753–69.

    Article  CAS  PubMed  Google Scholar 

  37. Liang H, Duan W, Hou H, Yi W, Zhang J, Jin Z, et al. The roles of nanocarriers on pigment epithelium-derived factor in the differentiation of human cardiac stem cells. Cell Tissue Res. 2015;362:611–21.

    Article  CAS  PubMed  Google Scholar 

  38. Lu Y, Feng J, Yang L, Tang H, Jin J, Xu X. Anti-inflammatory effects of a synthetic peptide derived from pigment epithelium-derived factor on H(2)O(2)-induced corneal injury in vitro. Chin Med J. 2014;127:1438–44.

    CAS  PubMed  Google Scholar 

  39. Dass CR, Ek ET, Choong PF. PEDF as an emerging therapeutic candidate for osteosarcoma. Curr Cancer Drug Targets. 2008;8:683–90.

    Article  CAS  PubMed  Google Scholar 

  40. Dass CR, Contreras KG, Dunstan DE, Choong PF. Chitosan microparticles encapsulating PEDF plasmid demonstrate efficacy in an orthotopic metastatic model of osteosarcoma. Biomaterials. 2007;28:3026–33.

    Article  CAS  PubMed  Google Scholar 

  41. Shi HS, Yang LP, Wei W, Su XQ, Li XP, Li M, et al. Systemically administered liposome-encapsulated Ad-PEDF potentiates the anti-cancer effects in mouse lung metastasis melanoma. J Transl Med. 2013;11:86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Li T, Zhang M, Han Y, Zhang H, Xu L, Xiang Y. Targeting therapy of choroidal neovascularization by use of polypeptide- and PEDF-loaded immunoliposomes under ultrasound exposure. J Huazhong Univ Sci Technol Med Sci. 2010;30:798–803.

    Article  PubMed  CAS  Google Scholar 

  43. Willats WG, McCartney L, Mackie W, Knox JP. Pectin: cell biology and prospects for functional analysis. Plant Mol Biol. 2001;47:9–27.

    Article  CAS  PubMed  Google Scholar 

  44. Sin HJ, Kim KO, Kim SH, Kim YA, Lee HS. Effect of resistant starch on the large bowel environment and plasma lipid in rats with loperamide-induced constipation. J Korean Soc Food Sci Nutr. 2010;39:684–91.

    Article  CAS  Google Scholar 

  45. Alestig K, Trollfors B, Stenqvist K. Acute non-specific diarrhoea: studies on the use of charcoal, kaolin-pectin and diphenoxylate. Practitioner. 1979;222:859–62.

    CAS  PubMed  Google Scholar 

  46. Srivastava P, Malviya R. Sources of pectin, extraction and its applications in pharmaceutical industry—an overview. Indian J Nat Prod Resour. 2011;2:10–8.

    CAS  Google Scholar 

  47. Willats WG, Knox JP, Mikkelsen JD. Pectin: new insights into an old polymer are starting to gel. Trends Food Sci Technol. 2006;17:97–104.

    Article  CAS  Google Scholar 

  48. Lupi FR, Gabriele D, Seta L, Baldino N, de Cindio B, Marino R. Rheological investigation of pectin-based emulsion gels for pharmaceutical and cosmetic uses. Rheol Acta. 2015;54:41–52.

    Article  CAS  Google Scholar 

  49. Sriamornsak P. Application of pectin in oral drug delivery. Expert Opin Drug Deliv. 2011;8:1009–23.

    Article  CAS  PubMed  Google Scholar 

  50. Maciel VBV, Yoshida CMP, Pereira S, Goycoolea FM, Franco TT. Electrostatic self-assembled chitosan-pectin nano- and microparticles for insulin delivery. Molecules. 2017;22:1707.

    Article  CAS  Google Scholar 

  51. Izadi Z, Divsalar A, Saboury AA, Sawyer L. β -lactoglobulin-pectin nanoparticle-based oral drug delivery system for potential treatment of colon cancer. Chem Biol Drug Des. 2016;88:209–16.

    Article  CAS  PubMed  Google Scholar 

  52. Das S, Ng KY, Ho PC. Design of a pectin-based microparticle formulation using zinc ions as the cross-linking agent and glutaraldehyde as the hardening agent for colonic-specific delivery of resveratrol: in vitro and in vivo evaluations. J Drug Target. 2011;19:446–57.

    Article  CAS  PubMed  Google Scholar 

  53. Gomaa AI, Martinent C, Hammami R, Fliss I, Subirade M. Dual coating of liposomes as encapsulating matrix of antimicrobial peptides: development and characterization. Front Chem. 2017;5:103.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Adamczak MI, Martinsen OG, Smistad G, Hiorth M. Polymer coated mucoadhesive liposomes intended for the management of xerostomia. Int J Pharm. 2017;527:72–8.

    Article  CAS  PubMed  Google Scholar 

  55. Pistone S, Rykke M, Smistad G, Hiorth M. Polysaccharide-coated liposomal formulations for dental targeting. Int J Pharm. 2017;516:106–15.

    Article  CAS  PubMed  Google Scholar 

  56. Adamczak MI A, Martinsen OG, Smistad G, Hiorth M. Water sorption properties of HM-pectin and liposomes intended to alleviate dry mouth. Int J Pharm. 2016;506:201–6.

    Article  PubMed  CAS  Google Scholar 

  57. Yao X, Bunt C, Cornish J, Quek SY, Wen J. Preparation, optimization and characterization of bovine lactoferrin-loaded liposomes and solid lipid particles modified by hydrophilic polymers using factorial design. Chem Biol Drug Des. 2014;83:560–75.

    Article  CAS  PubMed  Google Scholar 

  58. Thirawong N, Thongborisute J, Takeuchi H, Sriamornsak P. Improved intestinal absorption of calcitonin by mucoadhesive delivery of novel pectin-liposome nanocomplexes. J Control Release. 2008;125:236–45.

    Article  CAS  PubMed  Google Scholar 

  59. Katchalsky A, Eisenberg H. Molecular weight of polyacrylic and polymethacrylic acid. J Polym Sci A Polym Chem. 1951;6:145–54.

    CAS  Google Scholar 

  60. Sonneville-Aubrun O, Simonnet JT, L'alloret F. Nanoemulsions: a new vehicle for skincare products. Adv Colloid Interf Sci. 2004;108:145–9.

    Article  CAS  Google Scholar 

  61. Borodkin S, Sundberg DP. Polycarboxylic acid ion-exchange resin adsorbates for taste coverage in chewable tablets. J Pharm Sci. 1971;60:1523–7.

    Article  CAS  PubMed  Google Scholar 

  62. Saotome K. Process for improving a water absorbent polyacrylic acid polymer and an improved polymer produced by said process. Google Patents; 1988.

  63. Tian B, Liu S, Wu S, Lu W, Wang D, Jin L, et al. pH-responsive poly (acrylic acid)-gated mesoporous silica and its application in oral colon targeted drug delivery for doxorubicin. Colloids Surf B: Biointerfaces. 2017;154:287–96.

    Article  CAS  PubMed  Google Scholar 

  64. Ahmad N, Mohd Amin MC, Ismail I, Buang F. Enhancement of oral insulin bioavailability: in vitro and in vivo assessment of nanoporous stimuli-responsive hydrogel microparticles. Expert Opin Drug Deliv. 2016;13:621–32.

    Article  CAS  PubMed  Google Scholar 

  65. Jain S, Patil SR, Swarnakar NK, Agrawal AK. Oral delivery of doxorubicin using novel polyelectrolyte-stabilized liposomes (layersomes). Mol Pharm. 2012;9:2626–35.

    Article  CAS  PubMed  Google Scholar 

  66. Lencer WI, Weyer P, Verkman AS, Ausiello DA, Brown D. FITC-dextran as a probe for endosome function and localization in kidney. Am J Physiol-Cell Ph. 1990;258:309–17.

    Article  Google Scholar 

  67. Yu M, Huang S, Yu KJ, Clyne AM. Dextran and polymer polyethylene glycol (PEG) coating reduce both 5 and 30 nm iron oxide nanoparticle cytotoxicity in 2D and 3D cell culture. Int J Mol Sci. 2012;13:5554–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Myszka DG. Improving biosensor analysis. J Mol Recognit. 1999;12:279–84.

    Article  CAS  PubMed  Google Scholar 

  69. Disa JJ, Polvora VP, Pusic AL, Singh B, Cordeiro PG. Dextran-related complications in head and neck microsurgery: do the benefits outweigh the risks? A prospective randomized analysis. Plast Reconstr Surg. 2003;112:1534–9.

    Article  PubMed  Google Scholar 

  70. Constable P, Gohar H, Morin D, Thurmon J. Use of hypertonic saline-dextran solution to resuscitate hypovolemic calves with diarrhea. Am J Vet Res. 1996;57:97–104.

    CAS  PubMed  Google Scholar 

  71. Benelli U. Systane® lubricant eye drops in the management of ocular dryness. Clin Ophthalmol. 2011;5:783–90.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Hiippala S. Replacement of massive blood loss. Vox Sang. 1998;74:399–407.

    Article  CAS  PubMed  Google Scholar 

  73. Lopes M, Aniceto D, Abrantes M, Simoes S, Branco F, Vitoria I, et al. In vivo biodistribution of antihyperglycemic biopolymer-based nanoparticles for the treatment of type 1 and type 2 diabetes. Eur J Pharm Biopharm. 2017;113:88–96.

    Article  CAS  PubMed  Google Scholar 

  74. Ohno M, Nishida A, Sugitani Y, Nishino K, Inatomi O, Sugimoto M, et al. Nanoparticle curcumin ameliorates experimental colitis via modulation of gut microbiota and induction of regulatory T cells. PLoS One. 2017;12:0185999.

    Google Scholar 

  75. Junkins RD, Gallovic MD, Johnson BM, Collier MA, Watkins-Schulz R, Cheng N, et al. A robust microparticle platform for a STING-targeted adjuvant that enhances both humoral and cellular immunity during vaccination. J Control Release. 2018;270:1–13.

    Article  CAS  PubMed  Google Scholar 

  76. Soudry-Kochavi L, Naraykin N, Nassar T, Benita S. Improved oral absorption of exenatide using an original nanoencapsulation and microencapsulation approach. J Control Release. 2015;217:202–10. https://doi.org/10.1016/j.jconrel.2015.09.012.

    Article  CAS  PubMed  Google Scholar 

  77. Kriegel C, Amiji MM. Dual TNF-alpha/cyclin D1 gene dilencing with an oral polymeric microparticle system as a novel strategy for the treatment of inflammatory bowel disease. Clin Transl Gastroenterol. 2011;2:2.

    Article  CAS  Google Scholar 

  78. Manosroi A, Manosroi J. Microencapsulation of human insulin DEAE-dextran complex and the complex in liposomes by the emulsion non-solvent addition method. J Microencapsul. 1997;14:761–8.

    Article  CAS  PubMed  Google Scholar 

  79. Sakellariou P, Rowe R, White E. The solubility parameters of some cellulose derivatives and polyethylene glycols used in tablet film coating. Int J Pharm. 1986;31:175–57.

    Article  CAS  Google Scholar 

  80. Campbell AL, Holt BL, Stoyanov SD, Paunov VN. Scalable fabrication of anisotropic micro-rods from food-grade materials using an in shear flow dispersion–solvent attrition technique. J Mater Chem. 2008;18:4074–8.

    Article  CAS  Google Scholar 

  81. Quinteros DA, Ferreira LM, Schaffazick SR, Palma SD, Allemandi DA, Cruz L. Novel polymeric nanoparticles intended for ophthalmic administration of acetazolamide. J Pharm Sci. 2016;105:3183–90.

    Article  CAS  PubMed  Google Scholar 

  82. Xu Q, Zhang N, Qin W, Liu J, Jia Z, Liu H. Preparation, in vitro and in vivo evaluation of budesonide loaded core/shell nanofibers as oral colonic drug delivery system. J Nanosci Nanotechnol. 2013;13:149–56.

    Article  CAS  PubMed  Google Scholar 

  83. Sahu S, Saraf S, Kaur CD, Saraf S. Biocompatible nanoparticles for sustained topical delivery of anticancer phytoconstituent quercetin. Pak J Biol Sci. 2013;16:601–9.

    Article  CAS  PubMed  Google Scholar 

  84. Khonsari F, Zakeri-Milani P, Jelvehgari M. Formulation and evaluation of in-vitro characterization of gastic-mucoadhesive microparticles/discs containing metformin hydrochloride. Iran J Pharm Res. 2014;13:67–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Huang J, Wigent RJ, Bentzley CM, Schwartz JB. Nifedipine solid dispersion in microparticles of ammonio methacrylate copolymer and ethylcellulose binary blend for controlled drug delivery. Effect of drug loading on release kinetics. Int J Pharm. 2006;319:44–54.

    Article  CAS  PubMed  Google Scholar 

  86. Andrés-Guerrero V, Alarma-Estrany P, Molina-Martínez IT, Peral A, Herrero-Vanrell R, Pintor J. Ophthalmic formulations of the intraocular hypotensive melatonin agent 5-MCA-NAT. Exp Eye Res. 2009;88:504–11.

    Article  PubMed  CAS  Google Scholar 

  87. Scsukova S, Bujnakova MA, Kiss A, Rollerova E. Adverse eff ects of polymeric nanoparticle poly (ethylene glycol)- block-polylactide methyl ether (PEG-b-PLA) on steroid hormone secretion by porcine granulosa cells. Endocr Regul. 2017;51:96–104.

    Article  PubMed  Google Scholar 

  88. Kumar A, Lahiri SS, Singh H. Development of PEGDMA: MAA based hydrogel microparticles for oral insulin delivery. Int J Pharm. 2006;323:117–24.

    Article  CAS  PubMed  Google Scholar 

  89. Steward A, Bayley D, Howes C. The effect of enhancers on the buccal absorption of hybrid (BDBB) α-interferon. Int J Pharm. 1994;104:145–9.

    Article  CAS  Google Scholar 

  90. Fireman Z, Paz D, Kopelman Y. Capsule endoscopy: improving transit time and image view. World J Gastroenterol. 2005;11:5863–6.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Boushra M, Tous S, Fetih G, Korzekwa K, Lebo DB, Xue HY, et al. Development and evaluation of viscosity-enhanced nanocarrier (VEN) for oral insulin delivery. Int J Pharm. 2016;511:462–72.

    Article  CAS  PubMed  Google Scholar 

  92. Boche M, Pokharkar V. Quetiapine nanoemulsion for intranasal drug delivery: evaluation of brain-targeting efficiency. AAPS PharmSciTech. 2017;18:686–96.

    Article  CAS  PubMed  Google Scholar 

  93. Homar M, Dreu R, Burjak M, Gasperlin M, Kerc J, Srcic S. Study of immediate release spherical microparticles containing clarithromycin using a hot-melt fluid bed technique. Acta Chim Slov. 2011;58:318–25.

    CAS  PubMed  Google Scholar 

  94. Parmentier J, Hofhaus G, Thomas S, Cuesta LC, Gropp F, Schroder R, et al. Improved oral bioavailability of human growth hormone by a combination of liposomes containing bio-enhancers and tetraether lipids and omeprazole. J Pharm Sci. 2014;103:3985–93.

    Article  CAS  PubMed  Google Scholar 

  95. Wang F, Chen L, Jiang S, He J, Zhang X, Peng J, et al. Optimization of methazolamide-loaded solid lipid nanoparticles for ophthalmic delivery using Box-Behnken design. J Liposome Res. 2014;24:171–81.

    Article  CAS  PubMed  Google Scholar 

  96. Yang T, Cui FD, Choi MK, Lin H, Chung SJ, Shim CK, et al. Liposome formulation of paclitaxel with enhanced solubility and stability. Drug Deliv. 2007;14:301–8.

    Article  PubMed  CAS  Google Scholar 

  97. Nelson JD, Farris RL. Sodium hyaluronate and polyvinyl alcohol artificial tear preparations: a comparison in patients with keratoconjunctivitis sicca. Arch Ophthalmol. 1988;106:484–7.

    Article  CAS  PubMed  Google Scholar 

  98. Finley JH. Spectrophotometric determination of polyvinyl alcohol in paper coatings. Anal Chem. 1961;33:1925–7.

    Article  CAS  Google Scholar 

  99. Hyon S-H, Ikada Y. Method of molding a polyvinyl alcohol contact lens. Google Patents; 1989.

  100. Bayrami S, Esmaili Z, SeyedAlinaghi S, Jamali Moghadam SR, Bayrami S, Akbari Javar H, et al. Fabrication of long-acting insulin formulation based on poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) nanoparticles: preparation, optimization, characterization, and in vitro evaluation. Pharm Dev Technol. 2018:1–13.

  101. Kumar P, Singh AK, Raj V, Rai A, Keshari AK, Kumar D, et al. Poly (lactic-co-glycolic acid)-loaded nanoparticles of betulinic acid for improved treatment of hepatic cancer: characterization, in vitro and in vivo evaluations. Int J Nanomedicine. 2018;13:975–90.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Sahu KK, Pandey RS. Development and characterization of HBsAg-loaded Eudragit nanoparticles for effective colonic immunization. Pharm Dev Technol. 2018:1–10.

  103. Yang W, Fortunati E, Bertoglio F, Owczarek JS, Bruni G, Kozanecki M, et al. Polyvinyl alcohol/chitosan hydrogels with enhanced antioxidant and antibacterial properties induced by lignin nanoparticles. Carbohydr Polym. 2018;181:275–84.

    Article  CAS  PubMed  Google Scholar 

  104. Liu M, Yin D, Fu H, Deng F, Peng G, Shu G, et al. Double-coated enrofloxacin microparticles with chitosan and alginate: preparation, characterization and taste-masking effect study. Carbohydr Polym. 2017;170:247–53.

    Article  CAS  PubMed  Google Scholar 

  105. Park CG, Kim YK, Kim SN, Lee SH, Huh BK, Park MA, et al. Enhanced ocular efficacy of topically-delivered dorzolamide with nanostructured mucoadhesive microparticles. Int J Pharm. 2017;522:66–73.

    Article  CAS  PubMed  Google Scholar 

  106. Zhu L, Li M, Liu X, Du L, Jin Y. Inhalable oridonin-loaded poly (lactic-co-glycolic) acid large porous microparticles for in situ treatment of primary non-small cell lung cancer. Acta Pharm Sin B. 2017;7:80–90.

    Article  PubMed  Google Scholar 

  107. de Freitas Zompero RH, Lopez-Rubio A, de Pinho SC, Lagaron JM, de la Torre LG. Hybrid encapsulation structures based on beta-carotene-loaded nanoliposomes within electrospun fibers. Colloids Surf B. 2015;134:475–82.

    Article  CAS  Google Scholar 

  108. Okamoto Y, Yano R, Miyatake K, Tomohiro I, Shigemasa Y, Minami S. Effects of chitin and chitosan on blood coagulation. Carbohydr Polym. 2003;53:337–42.

    Article  CAS  Google Scholar 

  109. Tsai GJ, Su WH. Antibacterial activity of shrimp chitosan against Escherichia coli. J Food Prot. 1999;62:239–43.

    Article  CAS  PubMed  Google Scholar 

  110. Pavis H, Wilcock A, Edgecombe J, Carr D, Manderson C, Church A, et al. Pilot study of nasal morphine-chitosan for the relief of breakthrough pain in patients with cancer. J Pain Symptom Manag. 2002;24:598–602.

    Article  CAS  Google Scholar 

  111. Ng WL, Yeong WY, Naing MW. Polyelectrolyte gelatin-chitosan hydrogel optimized for 3D bioprinting in skin tissue engineering. Int J Bioprinting. 2016;2:53–62.

    Article  CAS  Google Scholar 

  112. Mhurchu CN, Dunshea-Mooij C, Bennett D, Rodgers A. Effect of chitosan on weight loss in overweight and obese individuals: a systematic review of randomized controlled trials. Obes Rev. 2005;6:35–42.

    Article  CAS  PubMed  Google Scholar 

  113. Paul W, Sharma CP. Chitosan and alginate wound dressings: a short review. Trends Biomater Artif Organs. 2004;18:18–23.

    Google Scholar 

  114. El-Sawy NM, El-Rehim HAA, Elbarbary AM, Hegazy E-SA. Radiation-induced degradation of chitosan for possible use as a growth promoter in agricultural purposes. Carbohydr Polym. 2010;79:555–62.

    Article  CAS  Google Scholar 

  115. Juang R-S, Shiau R-C. Metal removal from aqueous solutions using chitosan-enhanced membrane filtration. J Membr Sci. 2000;165:159–67.

    Article  CAS  Google Scholar 

  116. Chen G, Svirskis D, Lu W, Ying M, Huang Y, Wen J. N-trimethyl chitosan nanoparticles and CSKSSDYQC peptide: N-trimethyl chitosan conjugates enhance the oral bioavailability of gemcitabine to treat breast cancer. J Control Release. 2018;277:142–53.

    Article  CAS  PubMed  Google Scholar 

  117. Abkar M, Fasihi-Ramandi M, Kooshki H, Lotfi AS. Intraperitoneal immunization with urease loaded N-trimethyl chitosan nanoparticles elicits high protection against Brucella melitensis and Brucella abortus infections. Immunol Lett. 2018.

  118. Xu B, Zhang W, Chen Y, Xu Y, Wang B, Zong L. Eudragit (R) L100-coated mannosylated chitosan nanoparticles for oral protein vaccine delivery. Int J Biol Macromol. 2018;113:534–42.

    Article  CAS  PubMed  Google Scholar 

  119. Czuba E, Diop M, Mura C, Schaschkow A, Langlois A, Bietiger W, et al. Oral insulin delivery, the challenge to increase insulin bioavailability: influence of surface charge in nanoparticle system. Int J Pharm. 2018;542:47–55.

    Article  CAS  PubMed  Google Scholar 

  120. Shi Y, Xue J, Xu S, You Y, Yan XQ, Zhao X, et al. Polyelectrolyte complex nanoparticles based on chitosan and methoxy poly (ethylene glycol) methacrylate-co-poly (methylacrylic acid) for oral delivery of ibuprofen. Colloids Surf B: Biointerfaces. 2018;165:235–42.

    Article  CAS  PubMed  Google Scholar 

  121. Demirbolat GM, Altintas L, Yilmaz S, Degim IT. Development of orally applicable, combinatorial drug-loaded nanoparticles for the treatment of bibrosarcoma. J Pharm Sci. 2018;107:1398–407.

    Article  CAS  PubMed  Google Scholar 

  122. Gadalla HH, Soliman GM, Mohammed FA, El-Sayed AM. Development and in vitro/in vivo evaluation of Zn-pectinate microparticles reinforced with chitosan for the colonic delivery of progesterone. Drug Deliv. 2016;23:2541–54.

    CAS  PubMed  Google Scholar 

  123. Elbaz NM, Khalil IA, Abd-Rabou AA, El-Sherbiny IM. Chitosan-based nano-in-microparticle carriers for enhanced oral delivery and anticancer activity of propolis. Int J Biol Macromol. 2016;92:254–69.

    Article  CAS  PubMed  Google Scholar 

  124. Onishi H, Kikuchi H. Comparison of simple Eudragit microparticles loaded with prednisolone and Eudragit-coated chitosan-succinyl-prednisolone conjugate microparticles: part II. In vivo evaluation of efficacy, toxicity, and biodisposition characteristics. Int J Mol Sci. 2015;16:26125–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Caddeo C, Nacher A, Diez-Sales O, Merino-Sanjuan M, Fadda AM, Manconi M. Chitosan-xanthan gum microparticle-based oral tablet for colon-targeted and sustained delivery of quercetin. J Microencapsul. 2014;31:694–9.

    Article  CAS  PubMed  Google Scholar 

  126. Jiang T, Singh B, Li HS, Kim YK, Kang SK, Nah JW, et al. Targeted oral delivery of BmpB vaccine using porous PLGA microparticles coated with M cell homing peptide-coupled chitosan. Biomaterials. 2014;35:2365–73.

    Article  CAS  PubMed  Google Scholar 

  127. Liu Y, Yang T, Wei S, Zhou C, Lan Y, Cao A, et al. Mucus adhesion- and penetration-enhanced liposomes for paclitaxel oral delivery. Int J Pharm. 2018;537:245–56.

    Article  CAS  PubMed  Google Scholar 

  128. Wang M, Liu M, Xie T, Zhang BF, Gao XL. Chitosan-modified cholesterol-free liposomes for improving the oral bioavailability of progesterone. Colloids Surf B: Biointerfaces. 2017;159:580–5.

    Article  CAS  PubMed  Google Scholar 

  129. Caddeo C, Pons R, Carbone C, Fernandez-Busquets X, Cardia MC, Maccioni AM, et al. Physico-chemical characterization of succinyl chitosan-stabilized liposomes for the oral co-delivery of quercetin and resveratrol. Carbohydr Polym. 2017;157:1853–61.

    Article  CAS  PubMed  Google Scholar 

  130. Bavarsad N, Kouchak M, Mohamadipour P, Sadeghi-Nejad B. Preparation and physicochemical characterization of topical chitosan-based film containing griseofulvin-loaded liposomes. J Adv Pharm Technol Res. 2016;7:91–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Buts JP, Barudi C, Otte JB. Double-blind controlled study on the efficacy of sodium alginate (Gaviscon) in reducing gastroesophageal reflux assessed by 24 h continuous pH monitoring in infants and children. Eur J Pediatr. 1987;146:156–8.

    Article  CAS  PubMed  Google Scholar 

  132. Mukhopadhyay A, Midha VK. A review on designing the waterproof breathable fabrics part I: fundamental principles and designing aspects of breathable fabrics. J Ind Text. 2008;37:225–62.

    Article  CAS  Google Scholar 

  133. Luo Z, Zhang S, Pan J, Shi R, Liu H, Lyu Y, et al. Time-responsive osteogenic niche of stem cells: a sequentially triggered, dual-peptide loaded, alginate hybrid system for promoting cell activity and osteo-differentiation. Biomaterials. 2018;163:25–42.

    Article  CAS  PubMed  Google Scholar 

  134. Nur M, Vasiljevic T. Insulin inclusion into a tragacanth hydrogel: an oral delivery dystem for insulin. Materials (Basel). 2018;11:79.

    Article  Google Scholar 

  135. Zhang M, Xu C, Liu D, Han MK, Wang L, Merlin D. Oral delivery of nanoparticles loaded with ginger active compound, 6-Shogaol, attenuates ulcerative colitis and promotes wound healing in a murine model of ulcerative colitis. J Crohns Colitis. 2018;12:217–29.

    Article  PubMed  Google Scholar 

  136. Jayapal JJ, Dhanaraj S. Exemestane loaded alginate nanoparticles for cancer treatment: formulation and in vitro evaluation. Int J Biol Macromol. 2017;105:416–21.

    Article  CAS  PubMed  Google Scholar 

  137. Elmowafy E, Osman R, El-Shamy AH, Awad GA. Nanocomplexes of an insulinotropic drug: optimization, microparticle formation, and antidiabetic activity in rats. Int J Nanomedicine. 2014;9:4449–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Eroglu H, Burul-Bozkurt N, Uma S, Oner L. Preparation and in vitro/in vivo evaluation of microparticle formulations containing meloxicam. AAPS PharmSciTech. 2012;13:46–52.

    Article  CAS  PubMed  Google Scholar 

  139. Hebrard G, Hoffart V, Beyssac E, Cardot JM, Alric M, Subirade M. Coated whey protein/alginate microparticles as oral controlled delivery systems for probiotic yeast. J Microencapsul. 2010;27:292–302.

    Article  CAS  PubMed  Google Scholar 

  140. Sun H, Pan H, Yang Z, Shi M. The immune response and protective efficacy of vaccination with oral microparticle Aeromonas sobria vaccine in mice. Int Immunopharmacol. 2007;7:1259–64.

    Article  CAS  PubMed  Google Scholar 

  141. Shtenberg Y, Goldfeder M, Prinz H, Shainsky J, Ghantous Y, Abu El-Naaj I, et al. Mucoadhesive alginate pastes with embedded liposomes for local oral drug delivery. Int J Biol Macromol. 2018;111:62–9.

    Article  CAS  PubMed  Google Scholar 

  142. Maestrelli F, Mura P, Gonzalez-Rodriguez ML, Cozar-Bernal MJ, Rabasco AM, Di Cesare ML, et al. Calcium alginate microspheres containing metformin hydrochloride niosomes and chitosomes aimed for oral therapy of type 2 diabetes mellitus. Int J Pharm. 2017;530:430–9.

    Article  CAS  PubMed  Google Scholar 

  143. Sadeghi R, Moosavi-Movahedi A, Emam-Djomeh Z, Kalbasi-Ashtari A, Razavi S, Karimi M, et al. The effect of different desolvating agents on BSA nanoparticle properties and encapsulation of curcumin. J Nanopart Res. 2014;16:2565.

    Article  CAS  Google Scholar 

  144. Banipal TS, Kaur A, Banipal PK. Physicochemical aspects of the energetics of binding of sulphanilic acid with bovine serum albumin. Spectrochim Acta A. 2017;170:214–25.

    Article  CAS  Google Scholar 

  145. Kumar S, Koh J. Physiochemical, optical and biological activity of chitosan-chromone derivative for biomedical applications. Int J Mol Sci. 2012;13:6102–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Yuvaraja G, Pathak J, Weijiang Z, Yaping Z, Jiao X. Antibacterial and wound healing properties of chitosan/poly (vinyl alcohol)/zinc oxide beads (CS/PVA/ZnO). Int J Biol Macromol. 2017;103:234–41.

    Article  CAS  Google Scholar 

  147. Ni J, Waldman A, Khachigian LM. c-Jun regulates shear- and injury-inducible Egr-1 expression, vein graft stenosis after autologous end-to-side transplantation in rabbits, and intimal hyperplasia in human saphenous veins. J Biol Chem. 2010;285:4038–48.

    Article  CAS  PubMed  Google Scholar 

  148. Dass CR, Friedhuber AM, Khachigian LM, Dunstan DE, Choong PF. Downregulation of c-jun results in apoptosis-mediated anti-osteosarcoma activity in an orthotopic model. Cancer Biol Ther. 2008;7:1033–6.

    Article  CAS  PubMed  Google Scholar 

  149. Long GL, Winefordner JD. Limit of detection. A closer look at the IUPAC definition. Anal Chem. 2008;55:712–24.

    Google Scholar 

  150. Guideline IHT, editor. Validation of analytical procedures: text and methodology Q2 (R1). International Conference on Harmonization, Geneva, Switzerland; 2005.

  151. Green JM. A practical guide to analytical method validation. Anal Chem. 1996;68:305–9.

    Article  Google Scholar 

  152. Umrethia M, Kett VL, Andrews GP, Malcolm RK, Woolfson AD. Selection of an analytical method for evaluating bovine serum albumin concentrations in pharmaceutical polymeric formulations. J Pharm Biomed Anal. 2010;51:1175–9.

    Article  CAS  PubMed  Google Scholar 

  153. Yu Y, Ying PQ, Jin G. Competitive adsorption between bovine serum albumin and collagen observed by atomic force microscope. Chin Chem Lett. 2004;15:1465–8.

    CAS  Google Scholar 

Download references

Acknowledgements

This research did not receive any specific grant from funding agencies in the public, commercial or not-for-profit sectors. The authors acknowledge the technical assistance and equipment of the Curtin University Electron Microscope Facility, which has been partially funded by the university, and state and Commonwealth governments. HAS is partially supported by the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 690876.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Crispin R. Dass.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 164 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wong, C.Y., Martinez, J., Al-Salami, H. et al. Quantification of BSA-loaded chitosan/oligonucleotide nanoparticles using reverse-phase high-performance liquid chromatography. Anal Bioanal Chem 410, 6991–7006 (2018). https://doi.org/10.1007/s00216-018-1319-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-1319-9

Keywords

Navigation