Skip to main content
Log in

Detection of triacetone triperoxide by thermal decomposition peroxy radical chemical amplification coupled to cavity ring-down spectroscopy

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Triacetone triperoxide (TATP) is frequently used in improvised explosive devices because of its ease of manufacture and tremendous explosive force. In this paper, we describe a new method for detection of TATP, thermal decomposition peroxy radical chemical amplification cavity ring-down spectroscopy (TD-PERCA-CRDS). In this method, air is sampled through a heated inlet to which ~ 1 ppmv nitric oxide (NO) is added. To verify the purity of synthetic standards, the mid-infrared spectrum of TATP vapor was recorded. The thermal decomposition of TATP is shown to produce radicals which oxidize NO to nitrogen dioxide (NO2), whose concentration increase is monitored by optical absorption at 405 nm using a blue diode laser CRDS. The sensitivity could be improved through addition of ~ 1% ethane (C2H6), which fuels catalytic conversion of NO to NO2. The limit of detection of TD-PERCA-CRDS with respect to TATP is 22 pptv (1 s data), approximately six orders of magnitude below TATP’s saturation vapor pressure. Insights into the mechanism of TATP thermal decomposition, TD-PERCA-CRDS interferences, and the suitability of TD-PERCA-CRDS as a peroxy radical explosive detection method at security check points are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Oxley JC, Smith JL, Chen H. Decomposition of a multi-peroxidic compound: triacetone triperoxide (TATP). Propellants Explos Pyrotech. 2002;27(4):209–16. https://doi.org/10.1002/1521-4087(200209)27:4<209::aid-prep209>3.0.co;2-j.

    Article  CAS  Google Scholar 

  2. Dubnikova F, Kosloff R, Almog J, Zeiri Y, Boese R, Itzhaky H, et al. Decomposition of triacetone triperoxide is an entropic explosion. J Am Chem Soc. 2005;127(4):1146–59. https://doi.org/10.1021/ja0464903.

    Article  CAS  PubMed  Google Scholar 

  3. Ewing RG, Waltman MJ, Atkinson DA, Grate JW, Hotchkiss PJ. The vapor pressures of explosives. TrAC Trends Anal Chem. 2013;42(0):35–48. https://doi.org/10.1016/j.trac.2012.09.010.

    Article  CAS  Google Scholar 

  4. Mbah J, Knott D, Steward S. Thermogravimetric study of vapor pressure of TATP synthesized without recrystallization. Talanta. 2014;129:586–93. https://doi.org/10.1016/j.talanta.2014.06.031.

    Article  CAS  PubMed  Google Scholar 

  5. Schulte-Ladbeck R, Vogel M, Karst U. Recent methods for the determination of peroxide-based explosives. Anal Bioanal Chem. 2006;386(3):559–65. https://doi.org/10.1007/s00216-006-0579-y.

    Article  CAS  PubMed  Google Scholar 

  6. Bulatov V, Reany O, Grinko R, Schechter I, Keinan E. Time-resolved, laser initiated detonation of TATP supports the previously predicted non-redox mechanism. Phys Chem Chem Phys. 2013;15(16):6041–8. https://doi.org/10.1039/c3cp44662j.

    Article  CAS  PubMed  Google Scholar 

  7. Hiyoshi RI, Nakamura J, Brill TB. Thermal decomposition of organic peroxides TATP and HMTD by T-jump/FTIR spectroscopy. Propellants, Explosives, Pyrotechnics. 2007;32(2):127–34. https://doi.org/10.1002/prep.200700002.

    Article  CAS  Google Scholar 

  8. Burkholder JB, Sander SP, Abbatt JPD, Barker JR, Huie RE, Kolb CE, et al. Chemical kinetics and photochemical data for use in atmospheric studies, Evaluation Number 18. Pasadena: National Aeronautics and Space Administration, Jet Propulsion Laboratory, California Institute of Technology; 2015.

    Google Scholar 

  9. Lightfoot PD, Cox RA, Crowley JN, Destriau M, Hayman GD, Jenkin ME, et al. Organic peroxy-radicals—kinetics, spectroscopy and tropospheric chemistry. Atmos Environm A. 1992;26(10):1805–961. https://doi.org/10.1016/0960-1686(92)90423-I.

    Article  Google Scholar 

  10. Clemitshaw KC, Carpenter LJ, Penkett SA, Jenkin ME. A calibrated peroxy radical chemical amplifier for ground-based tropospheric measurements. J Geophys Res. 1997;102(D21):25405–16. https://doi.org/10.1029/97JD01902.

    Article  CAS  Google Scholar 

  11. Cantrell CA, Shetter RE, Lind JA, McDaniel AH, Calvert JG, Parrish DD, et al. An improved chemical amplifier technique for peroxy radical measurements. J Geophys Res. 1993;98(D2):2897–909. https://doi.org/10.1029/92JD02842.

    Article  CAS  Google Scholar 

  12. Atkinson R, Baulch DL, Cox RA, Crowley JN, Hampson RF, Hynes RG, et al. Evaluated kinetic and photochemical data for atmospheric chemistry: volume I—gas phase reactions of Ox, HOx, NOx and SOx species. Atmos Chem Phys. 2004;4:1461–738. https://doi.org/10.5194/acp-4-1461-2004.

    Article  CAS  Google Scholar 

  13. Baulch DL, Cobos CJ, Cox RA, Frank P, Hayman G, Just T, et al. Summary table of evaluated kinetic data for combustion modeling: supplement 1. Combust Flame. 1994;98(1):59–79. https://doi.org/10.1016/0010-2180(94)90198-8.

    Article  CAS  Google Scholar 

  14. Wood EC, Deming BL, Kundu S. Ethane-based chemical amplification measurement technique for atmospheric peroxy radicals. Environ Sci Technol Lett. 2016;4(1):15–9. https://doi.org/10.1021/acs.estlett.6b00438.

    Article  CAS  Google Scholar 

  15. Paul D, Osthoff HD. Absolute measurements of total peroxy nitrate mixing ratios by thermal dissociation blue diode laser cavity ring-down spectroscopy. Anal Chem. 2010;82(15):6695–703. https://doi.org/10.1021/ac101441z.

    Article  CAS  PubMed  Google Scholar 

  16. Taha YM, Odame-Ankrah CA, Osthoff HD. Real-time vapor detection of nitroaromatic explosives by catalytic thermal dissociation blue diode laser cavity ring-down spectroscopy. Chem Phys Lett. 2013;582(0):15–20. https://doi.org/10.1016/j.cplett.2013.07.040.

    Article  CAS  Google Scholar 

  17. Sharpe SW, Johnson TJ, Sams RL, Chu PM, Rhoderick GC, Johnson PA. Gas-phase databases for quantitative infrared spectroscopy. Appl Spectrosc. 2004;58(12):1452–61.

    Article  CAS  PubMed  Google Scholar 

  18. Furgeson A, Mielke LH, Paul D, Osthoff HD. A photochemical source of peroxypropionic and peroxyisobutanoic nitric anhydride. Atmos Environ. 2011;45(28):5025–32. https://doi.org/10.1016/j.atmosenv.2011.03.072.

    Article  CAS  Google Scholar 

  19. Oxley JC, Smith JL, Bowden PR, Rettinger RC. Factors influencing Triacetone Triperoxide (TATP) and Diacetone Diperoxide (DADP) formation: part I. Propellants Explos Pyrotech. 2013;38(2):244–54. https://doi.org/10.1002/prep.201200116.

    Article  CAS  Google Scholar 

  20. Roberts JM. The atmospheric chemistry of organic nitrates. Atmos Environ A. 1990;24(2):243–87. https://doi.org/10.1016/0960-1686(90)90108-Y.

    Article  Google Scholar 

  21. Brauer B, Dubnikova F, Zeiri Y, Kosloff R, Gerber RB. Vibrational spectroscopy of triacetone triperoxide (TATP): anharmonic fundamentals, overtones and combination bands. Spectrochim Acta A Mol Biomol Spectrosc. 2008;71(4):1438–45. https://doi.org/10.1016/j.saa.2008.04.022.

    Article  CAS  PubMed  Google Scholar 

  22. Weschler CJ. Ozone in indoor environments: concentration and chemistry. Indoor Air. 2000;10(4):269–88. https://doi.org/10.1034/j.1600-0668.2000.010004269.x.

    Article  CAS  PubMed  Google Scholar 

  23. Jakobi G, Fabian P. Indoor/outdoor concentrations of ozone and peroxyacetyl nitrate (PAN). Int J Biometeorol. 1997;40(3):162–5. https://doi.org/10.1007/s004840050037.

    Article  CAS  PubMed  Google Scholar 

  24. Paul D, Furgeson A, Osthoff HD. Measurement of total alkyl and peroxy nitrates by thermal decomposition cavity ring-down spectroscopy. Rev Sci Instrum. 2009;80:114101. https://doi.org/10.1063/1.3258204.

    Article  CAS  PubMed  Google Scholar 

  25. Thaler RD, Mielke LH, Osthoff HD. Quantification of nitryl chloride at part per trillion mixing ratios by thermal dissociation cavity ring-down spectroscopy. Anal Chem. 2011;83(7):2761–6. https://doi.org/10.1021/ac200055z.

    Article  CAS  PubMed  Google Scholar 

  26. Brown SS, Stark H, Ciciora SJ, McLaughlin RJ, Ravishankara AR. Simultaneous in situ detection of atmospheric NO3 and N2O5 via cavity ring-down spectroscopy. Rev Sci Instrum. 2002;73(9):3291–301. https://doi.org/10.1063/1.1499214.

    Article  CAS  Google Scholar 

  27. Phillips GJ, Pouvesle N, Thieser J, Schuster G, Axinte R, Fischer H, et al. Peroxyacetyl nitrate (PAN) and peroxyacetic acid (PAA) measurements by iodide chemical ionisation mass spectrometry: first analysis of results in the boreal forest and implications for the measurement of PAN fluxes. Atmos Chem Phys. 2013;13(3):1129–39. https://doi.org/10.5194/acp-13-1129-2013.

    Article  CAS  Google Scholar 

  28. Pacheco-Londono L, Pena AJ, Primera OM, Hernandez-Rivera SP, Mina N, Garcia R, et al. An experimental and theoretical study of the synthesis and vibrational spectroscopy of triacetone triperoxide (TATP). In: Carapezza EM (ed) Sensors, and Command, Control, Communications, and Intelligence(C31) Technologies for Homeland Security and Homeland Defense Iii, Pts 1 and 2, vol 5403. Proceedings of the Society of Photo-Optical Instrumentation Engineers (Spie). Spie-Int Soc Optical Engineering, Bellingham; 2004. pp 279–287. https://doi.org/10.1117/12.542851

  29. Hildenbrand J, Herbst J, Wollenstein J, Lambrecht A. Explosive detection using infrared laser spectroscopy. In: Razeghi M, Sudharsanan R, Brown GJ (eds) Quantum sensing and nanophotonic devices VI, vol 7222. Proceedings of SPIE. Spie-Int Soc Optical Engineering, Bellingham; 2009. p 72220B. https://doi.org/10.1117/12.808976.

  30. Guo C, Persons J, Woodford JN, Harbison GS. Gas-phase infrared and NMR investigation of the conformers of diacetone diperoxide (DADP). J Phys Chem A. 2015;119(40):10221–8. https://doi.org/10.1021/acs.jpca.5b07074.

    Article  CAS  PubMed  Google Scholar 

  31. Kolla P. The application of analytical methods to the detection of hidden explosives and explosive devices. Angew Chem Int Ed. 1997;36(8):800–11. https://doi.org/10.1002/anie.199708001.

    Article  Google Scholar 

  32. Rücker C, Kümmerer K. Environmental chemistry of organosiloxanes. Chem Rev. 2015;115(1):466–524. https://doi.org/10.1021/cr500319v.

    Article  CAS  PubMed  Google Scholar 

  33. Almond MJ, Becerra R, Bowes SJ, Cannady JP, Ogden JS, Walsh R. A mechanistic study of cyclic siloxane pyrolyses at low pressures. Phys Chem Chem Phys. 2008;10(45):6856–61. https://doi.org/10.1039/b812535j.

    Article  CAS  PubMed  Google Scholar 

  34. Davidson IMT, Thompson JF. Dimethylsilanone from the pyrolysis of octamethylcyclotetrasiloxane. J Chem Soc D: Chem Commun. 1971;6:251–2. https://doi.org/10.1039/c29710000251.

    Article  Google Scholar 

  35. Kulyk K, Zettergren H, Gatchell M, Alexander JD, Borysenko M, Palianytsia B, et al. Dimethylsilanone generation from pyrolysis of polysiloxanes filled with nanosized silica and ceria/silica. ChemPlusChem. 2016;81(9):1003–13. https://doi.org/10.1002/cplu.201600229.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Ezra Wood for sharing a preprint version of a manuscript and useful discussions.

Funding

This work was made possible by the financial support of the Natural Science and Engineering Research Council of Canada (NSERC) through a “Discovery grant.” YMT and MTS received financial support from NSERC’s Collaborative Research and Training Experience (CREATE) Program Integrating Atmospheric Chemistry and Physics from Earth to Space (IACPES).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans D. Osthoff.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 623 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taha, Y.M., Saowapon, M.T. & Osthoff, H.D. Detection of triacetone triperoxide by thermal decomposition peroxy radical chemical amplification coupled to cavity ring-down spectroscopy. Anal Bioanal Chem 410, 4203–4212 (2018). https://doi.org/10.1007/s00216-018-1072-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-1072-0

Keywords

Navigation