Skip to main content
Log in

Magnetofluorescent nanocomposites and quantum dots used for optimal application in magnetic fluorescence-linked immunoassay

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Magnetofluorescent nanocomposites with optimal magnetic and fluorescent properties were prepared and characterized by combining magnetic nanoparticles (iron oxide@polymethyl methacrylate) with fluorescent nanoparticles (rhodamine 6G@mSiO2). Experimental parameters were optimized to produce nanocomposites with high magnetic susceptibility and fluorescence intensity. The detection of a model biomarker (alpha-fetoprotein) was used to demonstrate the feasibility of applying the magnetofluorescent nanocomposites combined with quantum dots and using magnetic fluorescence-linked immunoassay. The magnetofluorescent nanocomposites enable efficient mixing, fast re-concentration, and nanoparticle quantization for optimal reactions. Biofunctional quantum dots were used to confirm the alpha-fetoprotein (AFP) content in sandwich immunoassay after mixing and washing. The analysis time was only one third that required in ELISA. The detection limit was 0.2 pg mL−1, and the linear range was 0.68 pg mL−1–6.8 ng mL−1. This detection limit is lower, and the linear range is wider than those of ELISA and other methods. The measurements made using the proposed method differed by less than 13% from those obtained using ELISA for four AFP concentrations (0.03, 0.15, 0.75, and 3.75 ng mL−1). The proposed method has a considerable potential for biomarker detection in various analytical and biomedical applications.

Magnetofluorescent nanocomposites combined with fluorescent quantum dots were used in magnetic fluorescence-linked immunoassay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Reddy LH, Arias JL, Nicolas J, Couvreur P. Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chem Rev. 2012;112:5818–78.

    Article  CAS  Google Scholar 

  2. Tsai HY, Chan JR, Li YC, Cheng FC, Fuh CB. Determination of hepatitis B surface antigen using magnetic immunoassays in a thin channel. Biosens Bioelectron. 2010;25:2701–5.

    Article  CAS  Google Scholar 

  3. Tsai HY, Hsieh YC, Chan JR, Su YM, Chang YC, Fuh CB. Effects of particle characteristics on magnetic immunoassay in a thin channel. Biosens Bioelectron. 2011;28:38–43.

    Article  CAS  Google Scholar 

  4. Qiu Z, Shu J, He Y, Lin Z, Zhang K, Lv S, et al. CdTe/CdSe quantumdot-based fluorescent aptasensor with hemin/G-quadruplex DNzyme for sensitive detection of lysozyme using rolling circle amplification and strand hybridization. Biosens Bioelectron. 2017;87:18–24.

    Article  CAS  Google Scholar 

  5. Lin Y, Zhou Q, Tang D, Niessner R, Knopp D. Signal-on photoelectrochemical immunoassay for aflatoxin B1 based on enzymatic product-etching MnO2 nanosheets for dissociation of carbon dots. Anal Chem. 2017;89:5637–45.

    Article  CAS  Google Scholar 

  6. Qiu Z, Shu J, Tang D. Bioresponsive release system for visual fluorescence detection of carcinoembryonic antigen from mesoporous silica nanocontainers mediated optical color on quantum dot-enzyme-impregnated paper. Anal Chem. 2017;89:5152–60.

    Article  CAS  Google Scholar 

  7. Wang G, Zhang X, Liu Y, Hu Z, Mei X, Uvda K. Magneto-fluorescent nanoparticles with high intensity NIR emission, T1- and T2-weighted MR for multimodal specific tumor imaging. J Mater Chem B. 2015;3:3072–80.

    Article  CAS  Google Scholar 

  8. Chen M, He Y, Chen X, Wang J. Quantum dots conjugated with Fe3O4-filled carbon nanotubes for cancer-targeted maging and magnetically guided drug delivery. Langmuir. 2012;28:16469–76.

    Article  CAS  Google Scholar 

  9. Sathe R, Agrawal A, Nie S. Mesoporous silica beads embedded with semiconductor quantum dots and iron oxide nanocrystals: dual-function microcarriers for optical encoding and magnetic separation. Anal Chem. 2006;78:5627–32.

    Article  CAS  Google Scholar 

  10. Wu J, Fu Z, Yan F, Ju H. Biomedical and clinical applications of immunoassays and immunosensors for tumor markers. Trends Anal Chem. 2007;26:679–88.

    Article  CAS  Google Scholar 

  11. Boonham N, Kreuze J, Winter S, van der Vlugt R, Bergerrvoet J, Tomlinson J, et al. Methods in virus diagnostics: from ELISA to next generation sequencing. Virus Res. 2014;186:20–31.

    Article  CAS  Google Scholar 

  12. Lequin RM. Enzyme immunoassay (EIA)/enzyme-linked immunosorbent assay (ELISA). Clin Chem. 2005;51:2415–8.

    Article  CAS  Google Scholar 

  13. Tsai HY, Chuang MJ, Chou BC, Yang SF, Fuh CB. Quantitative improvement of magnetic immunoassays in thin channels using magnetofluorescent nanocomposites. Sensors Actuators B Chem. 2016;223:834–8.

    Article  CAS  Google Scholar 

  14. Tang D, Su B, Tang J, Ren J, Chen G. Nanoparticle-based sandwich electrochemical immunoassay for carbohydrate antigen 125 with signal enhancement using enzyme-coated nanometer-sized enzyme-doped silica beads. Anal Chem. 2010;82:1527–34.

    Article  CAS  Google Scholar 

  15. Gao J, Zhang W, Huang P, Zhang B, Zhang X, Xu B. Intracellular spatial control of fluorescent magnetic nanoparticles. J Am Chem Soc. 2008;130:3710–1.

    Article  CAS  Google Scholar 

  16. Wang F, Chen X, Zhao Z, Tang S, Huang X, Lin C, et al. Synthesis of magnetic, fluorescent and mesoporous core-shell-structured nanoparticles for imaging, targeting and photodynamic therapy. J Mater Chem. 2011;21:11244–52.

    Article  CAS  Google Scholar 

  17. Yi DK, Selvan ST, Lee SS, Papaefthymiou GC, Kunolaliya D, Ying JY. Silica-coated nanocomposites of magnetic nanoparticles and quantum dots. J Am Chem Soc. 2005;127:4990–1.

    Article  CAS  Google Scholar 

  18. Huang X, Ren J. Gold nanoparticles based chemiluminescent resonance energy transfer for immunoassay of alpha fetoprotein cancer marker. Anal Chim Acta. 2011;686:115–20.

    Article  CAS  Google Scholar 

  19. Qi T, Liao J, Li Y, Peng J, Li W, Chu B, et al. Label-free alpha fetoprotein immunosensor established by the facile synthesis of a palladium-graphene nanocomposite. Biosens Bioelectron. 2014;61:245–50.

    Article  CAS  Google Scholar 

  20. Qi H, Ling C, Ma Q, Gao Q, Zhang C. Sensitive electrochemical immunosensor array for the simultaneous detection of multiple tumor markers. Analyst. 2012;137:393–9.

    Article  CAS  Google Scholar 

  21. Zhang J, Wang S, Liu K, Wei Y, Wang X, Duan Y. Novel signal-enhancing immunoassay for ultrasensitive biomarker detection based on laser-induced fluorescence. Anal Chem. 2015;87:2959–65.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Mr. S. S. Chuang, Mr. Lokesh Bettad, and Ms. Y. S. Lu for technical assistance.

Funding

This work was supported by the Ministry of Science and Technology in Taiwan (Grant MOST-104-2119-M-260-003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Bor Fuh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 1.16 mb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsai, H.Y., Li, S.Y. & Fuh, C.B. Magnetofluorescent nanocomposites and quantum dots used for optimal application in magnetic fluorescence-linked immunoassay. Anal Bioanal Chem 410, 1923–1929 (2018). https://doi.org/10.1007/s00216-018-0856-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-0856-6

Keywords

Navigation