Skip to main content

Advertisement

Log in

3D super-localization of intracellular organelle contacts at live single cell by dual-wavelength synchronized fluorescence-free imaging

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A fluorescence-free real-time three-dimensional (3D) super-localization method for the analysis of 3D structure of organelles (e.g., mitochondria-associated endoplasm reticulum [mito-ER] contacts) in live single cells under physiological conditions was developed with dual-wavelength enhanced dark-field microscopy. The method was applied to live single cells under physiological conditions to analyze the complex 3D mito-ER contact region by choosing an optimum nanotag with distinct scattering properties. Combining dual-view with enhanced dark-field microscopy provided concurrent images of different scattering wavelengths of nanotag-labeled mitochondria and ER. The reconstructed super-localized images resolved controversy over the distance between the intracellular organelles at functional contacts. The distance between mitochondria and ER was measured to be 45 nm, which was ~ 50% greater than in a previous report using electron microscopic tomography, and was a better fit for the likely features of these structures. These results indicate that this method was a reliable and convenient approach for investigating the 3D structure of organelles, such as mito-ER contacts in live single cells, and provided accurate information under physiological conditions.

Fluorescence-free enhanced dark-field 3D super-resolution microscopy (3D SRM) method, with dual-wavelength simultaneous imaging (DWSI) for 3D analysis of mitochondria-endoplasmic reticulum (Mito-ER) at their functional contact site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kilpatrick BS, Eden ER, Hockey LN, Yates E, Futter CE, Patel S. An endosomal NAADP-sensitive two-pore Ca2+ channel regulates ER-endosome membrane contact sites to control growth factor signaling. Cell Rep. 2017;18(7):1636–45.

    Article  CAS  Google Scholar 

  2. Davidson SM, Foote K, Kunuthur S, Gosain R, Tan N, Tyser R, et al. Inhibition of NAADP signalling on reperfusion protects the heart by preventing lethal calcium oscillations via two-pore channel 1 and opening of the mitochondrial permeability transition pore. Cardiovasc Res. 2015;108(3):357–66.

    Article  CAS  Google Scholar 

  3. Patel S. Function and dysfunction of two-pore channels. Sci Signal. 2015;8(384):re7.

    Article  Google Scholar 

  4. Rowland AA, Voeltz GK. Endoplasmic reticulum-mitochondria contacts: function of the junction. Nat Rev Mol Cell Biol. 2012;13(10):607–25.

    Article  CAS  Google Scholar 

  5. Csordás G, Renken C, Várnai P, Walter L, Weaver D, Buttle KF, et al. Structural and functional features and significance of the physical linkage between ER and mitochondria. J Cell Biol. 2006;174(7):915.

    Article  Google Scholar 

  6. Friedman JR, Lackner LL, West M, DiBenedetto JR, Nunnari J, Voeltz GK. ER tubules mark sites of mitochondrial division. Science. 2011;334(6054):358.

    Article  CAS  Google Scholar 

  7. Soltys BJ, Gupta RS. Interrelationships of endoplasmic reticulum, mitochondria, intermediate filaments, and microtubules—a quadruple fluorescence labeling study. Biochem Cell Biol. 1992;70(10–11):1174–86.

    Article  CAS  Google Scholar 

  8. Shim SH, Xia C, Zhong G, Babcock HP, Vaughan JC, Huang B, et al. Super-resolution fluorescence imaging of organelles in live cells with photoswitchable membrane probes. Proc Natl Acad Sci U S A. 2012;109(35):13978–83.

    Article  CAS  Google Scholar 

  9. Filadi R, Greotti E, Turacchio G, Luini A, Pozzan T, Pizzo P. On the role of mitofusin 2 in endoplasmic reticulum–mitochondria tethering. Proc Natl Acad Sci U S A. 2017;114(12):E2266–E7.

    Article  CAS  Google Scholar 

  10. Salka K, Bhuvanendran S, Wilson K, Bozidis P, Mehta M, Rainey K, et al. Superresolution imaging identifies that conventional trafficking pathways are not essential for endoplasmic reticulum to outer mitochondrial membrane protein transport. Sci Rep. 2017;7(1):16.

    Article  Google Scholar 

  11. Katsen-Globa A, Puetz N, Gepp MM, Neubauer JC, Zimmermann H. Study of SEM preparation artefacts with correlative microscopy: cell shrinkage of adherent cells by HMDS-drying. Scanning. 2016;38(6):625–33.

    Article  CAS  Google Scholar 

  12. Ostrowski A, Nordmeyer D, Boreham A, Holzhausen C, Mundhenk L, Graf C, et al. Overview about the localization of nanoparticles in tissue and cellular context by different imaging techniques. Beilstein J Nanotechnol. 2015;6:263–80.

    Article  Google Scholar 

  13. Thiberge S, Nechushtan A, Sprinzak D, Gileadi O, Behar V, Zik O, et al. Scanning electron microscopy of cells and tissues under fully hydrated conditions. Proc Natl Acad Sci U S A. 2004;101(10):3346–51.

    Article  CAS  Google Scholar 

  14. McMahon HT, Gallop JL. Membrane curvature and mechanisms of dynamic cell membrane remodelling. Nature. 2005;438(7068):590–6.

    Article  CAS  Google Scholar 

  15. Rust MJ, Bates M, Zhuang X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods. 2006;3(10):793–5.

    Article  CAS  Google Scholar 

  16. Chakkarapani SK, Zhang P, Ahn S, Kang SH. Total internal reflection plasmonic scattering-based fluorescence-free nanoimmunosensor probe for ultra-sensitive detection of cancer antigen 125. Biosens Bioelectron. 2016;81:23–31.

    Article  CAS  Google Scholar 

  17. Zhang P, Lee S, Chakkarapani SK, Fang N, Kang SH. Augmented 3D super-resolution of fluorescence-free nanoparticles using enhanced dark-feld illumination based on wavelength-modulation and a least-cubic algorithm. Sci Rep. 2016;6:32863.

    Article  Google Scholar 

  18. Zhang P, Lee S, Yu H, Fang N, Kang SH. Super-resolution of fluorescence-free plasmonic nanoparticles using enhanced dark-field illumination based on wavelength-modulation. Sci Rep. 2015;5:11447.

    Article  Google Scholar 

  19. Kang SH, Kim YJ, Yeung ES. Detection of single-molecule DNA hybridization by using dual-color total internal reflection fluorescence microscopy. Anal Bioanal Chem. 2007;387(8):2663–71.

    Article  CAS  Google Scholar 

  20. Toprak E, Balci H, Blehm BH, Selvin PR. Three-dimensional particle tracking via bifocal imaging. Nano Lett. 2007;7(7):2043–5.

    Article  CAS  Google Scholar 

  21. Ha JW, Sun W, Stender AS, Fang N. Dual-wavelength detection of rotational diffusion of single anisotropic nanocarriers on live cell membranes. J Phys Chem C. 2012;116(4):2766–71.

    Article  CAS  Google Scholar 

  22. Xiao L, Wei L, Liu C, He Y, Yeung ES. Unsynchronized translational and rotational diffusion of nanocargo on a living cell membrane. Angew Chem Int Ed Engl. 2012;51(17):4181–4.

    Article  CAS  Google Scholar 

  23. Mickoleit M, Schmid B, Weber M, Fahrbach FO, Hombach S, Reischauer S, et al. High-resolution reconstruction of the beating zebrafish heart. Nat Methods. 2014;11(9):919–22.

    Article  CAS  Google Scholar 

  24. Chen F, Tillberg PW, Boyden ES. Expansion microscopy. Science. 2015;347(6221):543–8.

    Article  CAS  Google Scholar 

  25. Lee K, Cui Y, Lee LP, Irudayaraj J. Quantitative imaging of single mRNA splice variants in living cells. Nat Nano. 2014;9(6):474–80.

    Article  CAS  Google Scholar 

  26. Zhang L, Li Y, Li D-W, Jing C, Chen X, Lv M, et al. Single gold nanoparticles as real-time optical probes for the detection of NADH-dependent intracellular metabolic enzymatic pathways. Angew Chem Int Ed. 2011;50(30):6789–92.

    Article  CAS  Google Scholar 

  27. Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Van Duyne RP. Biosensing with plasmonic nanosensors. Nat Mater. 2008;7(6):442–53.

    Article  CAS  Google Scholar 

  28. Lee K, Drachev VP, Irudayaraj J. DNA−gold nanoparticle reversible networks grown on cell surface marker sites: application in diagnostics. ACS Nano. 2011;5(3):2109–17.

    Article  CAS  Google Scholar 

  29. Geitmann A, McConnaughey W, Lang-Pauluzzi I, Franklin-Tong VE, Emons AMC. Cytomechanical properties of Papaver pollen tubes are altered after self-incompatibility challenge. Biophys J. 2004;86(5):3314–23.

    Article  CAS  Google Scholar 

  30. Mannen H, Nagata Y, Tsuji S. Mitochondrial DNA reveal that domestic goat (Capra hircus) are genetically affected by two subspecies of bezoar (Capra aegagurus). Biochem Genet. 2001;39(5):145–54.

    Article  CAS  Google Scholar 

  31. Introduction LL. Intellectual property protection of traditional cultural expressions: folklore in China. Cham: Springer International Publishing; 2014. p. 1-34

    Google Scholar 

  32. Ahn S, Yu H, Kang SH. Enhanced detection sensitivity of carcinoembryonic antigen on a plasmonic nanoimmunosensor by transmission grating-based total internal reflection scattering microscopy. Biosens Bioelectron. 2017;96:159–66.

    Article  CAS  Google Scholar 

  33. Ahn S, Zhang P, Yu H, Lee S, Kang SH. Ultrasensitive detection of α-fetoprotein by total internal reflection scattering-based super-resolution microscopy for superlocalization of nano-immunoplasmonics. Anal Chem. 2016;88(22):11070–6.

    Article  CAS  Google Scholar 

  34. Ju S, Chakkarapani SK, Lee S, Kang SH. Supersensitive single-particle plasmonic scattering-based cancer antigen 125 nanoimmunosensor by enhanced dark-field microscopy with dual-detection mode. Sens Actuators B: Chem. 2017;245:1015–22.

    Article  CAS  Google Scholar 

  35. Lee S, Choi JS, Kang SH. Combination of differential interference contrast with prism-type total internal fluorescence microscope for direct observation of polyamidoamine dendrimer nanoparticle as a gene delivery in living human cells. J Nanosci Nanotechno. 2007;7(11):3689–94.

    Article  CAS  Google Scholar 

  36. Ovesny M, Krizek P, Borkovec J, Svindrych Z, Hagen GM. ThunderSTORM: a comprehensive ImageJ plug-in for PALM and STORM data analysis and super-resolution imaging. Bioinformatics. 2014;30(16):2389–90.

    Article  CAS  Google Scholar 

  37. Kirshner H, Aguet F, Sage D, Unser M. 3-D PSF fitting for fluorescence microscopy: implementation and localization application. J Microsc. 2013;249(1):13–25.

    Article  CAS  Google Scholar 

  38. Wolf E. Electromagnetic diffraction in optical systems. I. An integral representation of the image field. Proc Math Phys Sci. 1959;253(1274):349.

    Article  Google Scholar 

  39. Bourg N, Mayet C, Dupuis G, Barroca T, Bon P, Lécart S, et al. Direct optical nanoscopy with axially localized detection. Nat Photonics. 2015;9(9):587–93.

    Article  CAS  Google Scholar 

  40. Howes PD, Chandrawati R, Stevens MM. Colloidal nanoparticles as advanced biological sensors. Science. 2014;346(6205):1247390.

    Article  Google Scholar 

  41. Yang X, Yang M, Pang B, Vara M, Xia Y. Gold nanomaterials at work in biomedicine. Chem Rev. 2015;115(19):10410–88.

    Article  CAS  Google Scholar 

  42. Olson J, Dominguez-Medina S, Hoggard A, Wang LY, Chang WS, Link S. Optical characterization of single plasmonic nanoparticles. Chem Socy Rev. 2015;44(1):40–57.

    Article  CAS  Google Scholar 

  43. Cui Y, Wang X, Ren W, Liu J, Irudayaraj J. Optical clearing delivers ultrasensitive hyperspectral dark-field imaging for single-cell evaluation. ACS Nano. 2016;10(3):3132–43.

    Article  CAS  Google Scholar 

  44. Wu L, Reinhard BM. Probing subdiffraction limit separations with plasmon coupling microscopy: concepts and applications. Chem Soc Rev. 2014;43(11):3884–97.

    Article  CAS  Google Scholar 

  45. Su KH, Wei QH, Zhang X, Mock JJ, Smith DR, Schultz S. Interparticle coupling effects on plasmon resonances of nanogold particles. Nano Lett. 2003;3(8):1087–90.

    Article  CAS  Google Scholar 

  46. Wang G, Stender AS, Sun W, Fang N. Optical imaging of non-fluorescent nanoparticle probes in live cells. Analyst. 2010;135(2):215–21.

    Article  CAS  Google Scholar 

  47. Huang T, Browning LM, Xu XH. Far-field photostable optical nanoscopy (PHOTON) for real-time super-resolution single-molecular imaging of signaling pathways of single live cells. Nano. 2012;4(9):2797–812.

    CAS  Google Scholar 

  48. Halas NJ, Lal S, Chang WS, Link S, Nordlander P. Plasmons in strongly coupled metallic nanostructures. Chem Rev. 2011;111(6):3913–61.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Basic Science Research Program of the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. 2015R1A2A2A01003839).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seong Ho Kang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 812 kb)

Movie S1

(WMV 1.47 mb)

Movie S2

(WMV 2.53 mb)

Movie S3

(WMV 1.92 mb)

Movie S4

(WMV 833 kb)

Movie S5

(WMV 6.93 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakkarapani, S.K., Zhang, P. & Kang, S.H. 3D super-localization of intracellular organelle contacts at live single cell by dual-wavelength synchronized fluorescence-free imaging. Anal Bioanal Chem 410, 1551–1560 (2018). https://doi.org/10.1007/s00216-017-0805-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-017-0805-9

Keywords

Navigation