Skip to main content
Log in

Combining Raman and laser induced breakdown spectroscopy by double pulse lasing

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A new approach combining Raman spectrometry and laser induced breakdown spectrometry (LIBS) within a single laser event was suggested. A pulsed solid state Nd:YAG laser running in double pulse mode (two frequency-doubled sequential nanosecond laser pulses with dozens microseconds delay) was used to combine two spectrometry methods within a single instrument (Raman/LIBS spectrometer). First, a low-energy laser pulse (power density far below ablation threshold) was used for Raman measurements while a second powerful laser pulse created the plasma suitable for LIBS analysis. A short time delay between two successive pulses allows measuring LIBS and Raman spectra at different moments but within a single laser flash-lamp pumping. Principal advantages of the developed instrument include high quality Raman/LIBS spectra acquisition (due to optimal gating for Raman/LIBS independently) and absence of target thermal alteration during Raman measurements. A series of high quality Raman and LIBS spectra were acquired for inorganic salts (gypsum, anhydrite) as well as for pharmaceutical samples (acetylsalicylic acid). To the best of our knowledge, the quantitative analysis feasibility by combined Raman/LIBS instrument was demonstrated for the first time by calibration curves construction for acetylsalicylic acid (Raman) and copper (LIBS) in gypsum matrix. Combining ablation pulses and Raman measurements (LIBS/Raman measurements) within a single instrument makes it an efficient tool for identification of samples hidden by non-transparent covering or performing depth profiling analysis including remote sensing.

Combining Raman and laser induced breakdown spectroscopy by double pulse lasing

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Pelletier JM. Quantitative analysis using Raman spectrometry. Appl Spectrosc. 2003;57:20A–42A.

    Article  CAS  Google Scholar 

  2. Kudelski A. Analytical applications of Raman spectroscopy. Talanta. 2008;76:1–8.

    Article  CAS  Google Scholar 

  3. Galbács G. A critical review of recent progress in analytical laser-induced breakdown spectroscopy. Anal Bioanal Chem. 2015;407:7537–62.

    Article  Google Scholar 

  4. Hahn DW, Omenetto N. Laser-induced breakdown spectroscopy (LIBS), Part II: Review of instrumental and methodological approaches to material analysis and applications to different fields. Appl Spectrosc. 2012;66:347–419.

    Article  CAS  Google Scholar 

  5. Labutin TA, Lednev VN, Ilyin AA, Popov AM. Femtosecond laser-induced breakdown spectroscopy. J Anal At Spectrom. 2016;31:90–118.

    Article  CAS  Google Scholar 

  6. Sturm V, Fleige R, de Kanter M, Leitner R, Pilz K, Fischer D, Hubmer G, Noll R (2014) Laser-induced breakdown spectroscopy for 24/7 automatic liquid slag analysis at a steel works. Anal Chem 86:9687–9692

  7. Antonio KA, Schultz ZD. Advances in biomedical Raman microscopy. Anal Chem. 2014;86:30–46.

    Article  CAS  Google Scholar 

  8. Hubmer G, Kitzberger R, Mörwald K. Application of LIBS to the in-line process control of liquid high-alloy steel under pressure. Anal Bioanal Chem. 2006;385:219–24.

    Article  CAS  Google Scholar 

  9. Stelmaszczyk K, Rohwetter P, Mejean G, Al E (2004) Long-distance remote laser-induced breakdown spectroscopy using filamentation in air. Appl Phys Lett 3977–3979

  10. Wiens RC, Sharma SK, Thompson J, Misra A, Lucey PG. Joint analyses by laser-induced breakdown spectroscopy (LIBS) and Raman spectroscopy at stand-off distances. Spectrochim Acta – Part A Mol Biomol Spectrosc. 2005;61:2324–34.

    Article  Google Scholar 

  11. Salle B, Mauchien P, Maurice S, Sallé B, Mauchien P, Maurice S. Laser-induced breakdown spectroscopy in open-path configuration for the analysis of distant objects. Spectrochim Acta – Part B At Spectrosc. 2007;62:739–68.

    Article  Google Scholar 

  12. Acosta-Maeda TE, Misra AK, Muzangwa LG, Berlanga G, Muchow D, Porter J, et al. Remote Raman measurements of minerals, organics, and inorganics at 430 m range. Appl Opt. 2016;55:10283–9.

    Article  Google Scholar 

  13. Moros J, Lorenzo JA, Lucena P, Tobaria LM, Laserna JJJ. Simultaneous Raman spectroscopy-laser-induced breakdown spectroscopy for instant standoff analysis of explosives using a mobile integrated sensor platform. Anal Chem. 2010;82:1389–400.

    Article  CAS  Google Scholar 

  14. Angel MS, Gomer RN, Sharma KS, McKay C. Remote Raman spectroscopy for planetary exploration: a review. Appl Spectrosc. 2012;66:137–50.

    Article  CAS  Google Scholar 

  15. Lin Q, Niu G, Wang Q, Yu Q, Duan Y. Combined laser-induced breakdown with raman spectroscopy: historical technology development and recent applications. Appl Spectrosc Rev. 2013;48:487–508.

    Article  CAS  Google Scholar 

  16. Foucher F, Lopez-Reyes G, Bost N, Rull-Perez F, Rüßmann P, Westall F. Effect of grain size distribution on Raman analyses and the consequences for in situ planetary missions. J Raman Spectrosc. 2013;44:916–25.

    Article  CAS  Google Scholar 

  17. Derome D, Cathelineau M, Fabre C, Boiron M-C, Banks D, Lhomme T, et al. Paleo-fluid composition determined from individual fluid inclusions by Raman and LIBS: Application to mid-proterozoic evaporitic Na–Ca brines (Alligator Rivers Uranium Field, northern territories Australia). Chem Geol. 2007;237:240–54.

    Article  CAS  Google Scholar 

  18. Bruder R, Detalle V, Coupry C. An example of the complementarity of laser-induced breakdown spectroscopy and Raman microscopy for wall painting pigments analysis. Romain Bruder. 2007; Journal of Raman Spectroscopy, Wiley InterScience. J Raman Spectrosc. 2007;38:909–15.

    Article  CAS  Google Scholar 

  19. Bruder R, Detalle V, Coupry C. An example of the complementarity of laser-induced breakdown spectroscopy and Raman microscopy for wall painting pigments analysis. J Raman Spectrosc. 2007;38:909–15.

    Article  CAS  Google Scholar 

  20. Moros J, Laserna JJ. New Raman laser-induced breakdown spectroscopy identity of explosives using parametric data fusion on an integrated sensing platform. Anal Chem. 2011;83:6275–85.

    Article  CAS  Google Scholar 

  21. Moros J, Lorenzo JA, Laserna JJ, Lorenzo AJ, Laserna JJ. Standoff detection of explosives: critical comparison for ensuing options on Raman spectroscopy–LIBS sensor fusion. Anal Bioanal Chem. 2011;400:3353–65.

    Article  CAS  Google Scholar 

  22. Sharma SK, Misra A, Lucey P, Lentz RC. A combined remote Raman and LIBS instrument for characterizing minerals with 532 nm laser excitation. Spectrochim Acta – Part A Mol Biomol Spectrosc. 2009;73:468–76.

    Article  Google Scholar 

  23. Thornton B, Takahashi T, Sato T, Sakka T, Tamura A, Matsumoto A, et al. Development of a deep-sea laser-induced breakdown spectrometer for in situ multi-element chemical analysis. Deep Sea Res – Part I Oceanogr Res Pap. 2015;95:20–36.

    Article  CAS  Google Scholar 

  24. Zhang X, Kirkwood JW, Walz MP, Peltzer TE, Brewer GP. A review of advances in deep-ocean Raman spectroscopy. Appl Spectrosc. 2012;66:237–49.

    Article  CAS  Google Scholar 

  25. Dyar DM, Tucker MJ, Humphries S, Clegg MS, Wiens CR, Lane DM. Strategies for Mars remote laser-induced breakdown spectroscopy analysis of sulfur in geological samples. Spectrochim Acta– Part B At Spectrosc. 2011;66:39–56.

    Article  Google Scholar 

  26. Meslin P-Y, Gasnault O, Forni O, Schröder S, Cousin A, Berger G, Clegg SM, Lasue J, Maurice S, Sautter V, Le Mouélic S, Wiens RC, Fabre C, Goetz W, Bish D, Mangold N, Ehlmann B, Lanza N, Harri A-M, Anderson R, Rampe E, McConnochie TH, Pinet P, Blaney D, Léveillé R, Archer D, Barraclough B, Bender S, Blake D, Blank JG, Bridges N, Clark BC, DeFlores L, Delapp D, Dromart G, Dyar MD, Fisk M, Gondet B, Grotzinger J, Herkenhoff K, Johnson J, Lacour J-L, Langevin Y, Leshin L, Lewin E, Madsen MB, Melikechi N, Mezzacappa A, Mischna MA, Moores JE, Newsom H, Ollila A, Perez R, Renno N, Sirven J-B, Tokar R, de la Torre M, D’Uston L, Vaniman D, Yingst A. Soil diversity and hydration as observed by ChemCam at Gale Crater, Mars. Science. 2013;341:1238670. https://doi.org/10.1126/science.1238670

  27. Sharma SK. New trends in telescopic remote Raman spectroscopic instrumentation. Spectrochim Acta – Part A Mol Biomol Spectrosc. 2007;68:1008–22.

    Article  Google Scholar 

  28. Shameem KMM, Choudhari KS, Bankapur A, Kulkarni SD, Unnikrishnan VK, George SD, et al. A hybrid LIBS-Raman system combined with chemometrics: an efficient tool for plastic identification and sorting. Anal Bioanal Chem. 2017;409:3299–308.

    Article  CAS  Google Scholar 

  29. Wallin S, Pettersson A, Östmark H, Hobro A. Laser-based standoff detection of explosives: a critical review. Anal Bioanal Chem. 2009;395:259–74.

    Article  CAS  Google Scholar 

  30. Hooijschuur J-H, Iping Petterson EI, Davies RG, Gooijer C, Ariese F. Time resolved Raman spectroscopy for depth analysis of multi-layered mineral samples. J Raman Spectrosc. 2013;44:1540–7.

    Article  CAS  Google Scholar 

  31. Westlake P, Siozos P, Philippidis A, Apostolaki C, Derham B, Terlixi A, et al. Studying pigments on painted plaster in Minoan, Roman and Early Byzantine Crete. A multi-analytical technique approach. Anal Bioanal Chem. 2012;402:1413–32.

    Article  CAS  Google Scholar 

  32. Bazalgette Courrèges-Lacoste G, Ahlers B, Pérez FR. Combined Raman spectrometer/laser-induced breakdown spectrometer for the next ESA mission to Mars. Spectrochim Acta – Part A Mol Biomol Spectrosc. 2007;68:1023–8.

    Article  Google Scholar 

  33. Hoehse M, Mory D, Florek S, Weritz F, Gornushkin I, Panne U. A combined laser-induced breakdown and Raman spectroscopy Echelle system for elemental and molecular microanalysis. Spectrochim Acta – Part B At Spectrosc. 2009;64:1219–27.

    Article  Google Scholar 

  34. Matroodi F, Tavassoli SH. Experimental investigation on concurrent laser-induced breakdown spectroscopy Raman spectroscopy. Appl Opt. 2015;54:400–7.

    Article  CAS  Google Scholar 

  35. Giakoumaki A, Osticioli I, Anglos D. Spectroscopic analysis using a hybrid LIBS-Raman system. Appl Phys A. 2006;83:537–41.

    Article  CAS  Google Scholar 

  36. Dreyer BC, Mungas SG, Thanh P, Radziszewski GJ. Study of sub-mJ-excited laser-induced plasma combined with Raman spectroscopy under Mars atmosphere-simulated conditions. Spectrochim. Acta Part B At Spectrosc. 2007:62.

  37. Clegg SM, Wiens R, Misra AK, Sharma SK, Lambert J, Bender S, Newell R, Nowak-Lovato K, Smrekar S, Dyar MD, Maurice S. Planetary geochemical investigations using Raman and laser-induced breakdown spectroscopy. Appl Spectrosc. 2014;68:925–36.

  38. Abedin MN, Bradley AT, Sharma SK, Misra AK, Lucey PG, McKay CP, et al. Mineralogy and astrobiology detection using laser remote sensing instrument. Appl Opt. 2015;54:7598–611.

    Article  CAS  Google Scholar 

  39. Sharma SK, Misra AK, Lucey PG, Wiens RC, Clegg SM. Combined remote LIBS and Raman spectroscopy at 8.6 m of sulfur-containing minerals, and minerals coated with hematite or covered with basaltic dust. Spectrochim Acta – Part A Mol Biomol Spectrosc. 2007;68:1036–45.

    Article  CAS  Google Scholar 

  40. Choi S-J, Choi J-J, Yoh JJ. Advancing the experimental design for simultaneous acquisition of laser induced plasma and Raman signals using a single pulse. Spectrochim Acta – Part B At Spectrosc. 2016;123:1–5.

    Article  CAS  Google Scholar 

  41. Lednev VN, Pershin SM, Bunkin AF, Samokhvalov AA, Veiko VP, Kudryashov SI, et al. Double pulse laser induced breakdown spectroscopy with Gaussian and multimode beams. Spectrochim Acta – Part B At Spectrosc. 2016;124:47–55.

    Article  CAS  Google Scholar 

  42. Berenblut BJ, Dawson P, Wilkinson GR. The Raman spectrum of gypsum. Spectrochim Acta – Part A Mol Spectrosc. 1971;27:1849–63.

    Article  CAS  Google Scholar 

  43. Boczar M, Wójcik MJ, Szczeponek K, Jamróz D, Ziba A, Kawałek B. Theoretical modeling of infrared spectra of aspirin and its deuterated derivative. Chem Phys. 2003;286:63–79.

    Article  CAS  Google Scholar 

  44. Ribeiro YA, Caires ACF, Boralle N, Ionashiro M. Thermal decomposition of acetylsalicylic acid (aspirin). Thermochim Acta. 1996;279:177–81.

    Article  Google Scholar 

  45. Lednev VN, Sdvizhenskii PA, Grishin MY, Filippov MN, Shchegolikhin AN, Pershin SM. Laser crater enhanced Raman spectroscopy. Opt Lett. 2017;42:607–10.

    Article  Google Scholar 

  46. Strachan CJ, Rades T, Gordon KC, Rantanen J. Raman spectroscopy for quantitative analysis of pharmaceutical solids. J Pharm Pharmacol. 2007;59:179–92.

    Article  CAS  Google Scholar 

  47. Capitelli F, Colao F, Provenzano MR, Fantoni R, Brunetti G, Senesi N. Determination of heavy metals in soils by Laser Induced Breakdown Spectroscopy. Geoderma. 2002;106:45–62.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was performed with support of the Russian Foundation of Basic Research (grants 15-03-09154, 15-38-70025). V.N.L. gratefully acknowledges financial support of the Russian Science Foundation (agreement No. 16-19-10656). Some Raman spectra were run on a Perkin-Elmer RamanStation-400 spectrometer belonging to the Corporate Pool of Scientific Instrumentation and Services – New Materials and Technologies of the Emanuel Institute of Biochemical Physics, Russian Academy of Sciences. The authors acknowledge the anonymous referee for fruitful discussion. V.B.O. acknowledges the Russian Ministry of Education and Science for financial support (contract 3.6634.2017/6.7).

Author information

Authors and Affiliations

Authors

Contributions

Authors contributed equally.

Corresponding author

Correspondence to Vasily N. Lednev.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lednev, V.N., Pershin, S.M., Sdvizhenskii, P.A. et al. Combining Raman and laser induced breakdown spectroscopy by double pulse lasing. Anal Bioanal Chem 410, 277–286 (2018). https://doi.org/10.1007/s00216-017-0719-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-017-0719-6

Keywords

Navigation