Skip to main content
Log in

Uncertainty evaluation in normalization of isotope delta measurement results against international reference materials

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Isotope delta measurements are normalized against international reference standards. Although multi-point normalization is becoming a standard practice, the existing uncertainty evaluation practices are either undocumented or are incomplete. For multi-point normalization, we present errors-in-variables regression models for explicit accounting of the measurement uncertainty of the international standards along with the uncertainty that is attributed to their assigned values. This manuscript presents framework to account for the uncertainty that arises due to a small number of replicate measurements and discusses multi-laboratory data reduction while accounting for inevitable correlations between the laboratories due to the use of identical reference materials for calibration. Both frequentist and Bayesian methods of uncertainty analysis are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Schimmelmann A, Qi H, Coplen TB, Brand WA, Fong J, Meier-Augenstein W, Kemp HF, Toman B, Ackermann A, Assonov S, Aerts-Bijma AT, Brejcha R, Chikaraishi Y, Darwish T, Elsner M, Gehre M, Geilmann H, Gröning M, Hélie JF, Herrero-Martín S, Meijer HAJ, Sauer PE, Sessions AL, Werner RA. Organic reference materials for hydrogen, carbon, and nitrogen stable isotope-ratio measurements: caffeines, n-alkanes, fatty acid methyl esters, glycines, l-valines, polyethylenes, and oils. Anal Chem 2016;88:4294–4302. https://doi.org/10.1021/acs.analchem.5b04392.

    Article  CAS  Google Scholar 

  2. Skrzypek G. Normalization procedures and reference material selection in stable HCNOS isotope analyses: an overview. Anal Bioanal Chem 2012;405:2815–2823. https://doi.org/10.1007/s00216-012-6517-2.

    Article  Google Scholar 

  3. Szpak P, Metcalfe JZ, Macdonald RA. Best practices for calibrating and reporting stable isotope measurements in archaeology. J. Arch. Sci.: Reports 2017;13:609–616. https://doi.org/10.1016/j.jasrep.2017.05.007.

    Google Scholar 

  4. Werner RA, Brand WA. Referencing strategies and techniques in stable isotope ratio analysis. Rapid Commun Mass Spectrom 2001;15:501–519. https://doi.org/10.1002/rcm.258.

    Article  CAS  Google Scholar 

  5. Dunn PJH, Hai L, Malinovsky D, Goenaga-Infante H. Simple spreadsheet templates for the determination of the measurement uncertainty of stable isotope ratio delta values. Rapid Commun Mass Spectrom 2015;29:2184–2186. https://doi.org/10.1002/rcm.7376.

    Article  CAS  Google Scholar 

  6. Coplen TB. Guidelines and recommended terms for expression of stable-isotope-ratio and gas-ratio measurement results. Rapid Commun Mass Spectrom 2011; 25: 2538–2560. https://doi.org/10.1002/rcm.5129.

    Article  CAS  Google Scholar 

  7. Wieser ME. Atomic weights of the elements 2005 (IUPAC Technical Report). Pure Appl Chem 2006;78: 2051–2066. https://doi.org/10.1351/pac200678112051.

    Article  CAS  Google Scholar 

  8. Brand WA, Coplen TB, Vogl J, Rosner M, Prohaska T. Assessment of international reference materials for isotope-ratio analysis (IUPAC Technical Report). Pure Appl Chem 2014;86 :425–467. https://doi.org/10.1515/pac-2013-1023.

    Article  CAS  Google Scholar 

  9. Paul D, Skrzypek G, Fórizs I. Normalization of measured stable isotopic compositions to isotope reference scales - a review. Rapid Commun Mass Spectrom 2007;21:3006–3014. https://doi.org/10.1002/rcm.3185.

    Article  CAS  Google Scholar 

  10. Carter JF, Barwick VJ. 2011. Good Practice Guide for Isotope Ratio Mass Spectrometry (FIRMS) ISBN 978-0-948926-31-0.

  11. ISO 6143:2001. 2001. Gas analysis – comparison methods for determining and checking the composition of calibration gas mixtures International Organization for Standardization Geneva, Switzerland.

  12. Guenther FR, Possolo A. Calibration and uncertainty assessment for certified reference gas mixtures. Anal Bioanal Chem 2011;399:489–500. https://doi.org/10.1007/s00216-010-4379-z.

    Article  CAS  Google Scholar 

  13. Possolo AM. 2015. Simple guide for evaluating and expressing the uncertainty of NIST Measurement Results, Technical Note 1900 (NIST).

  14. Kacker RN. Combining information from interlaboratory evaluations using a random effects model. Metrologia 2004;41:132–136. https://doi.org/10.1088/0026-1394/41/3/004.

    Article  Google Scholar 

  15. Toman B, Possolo A. Laboratory effects models for interlaboratory comparisons. Accred Qual Assur 2009; 14:553–563. https://doi.org/10.1007/s00769-009-0547-2.

    Article  Google Scholar 

  16. Koepke A, Lafarge T, Possolo A, Toman B. Consensus building for interlaboratory studies, key comparisons, and metaanalysis. Metrologia 2017;54:S34–S62. https://doi.org/10.1088/1681-7575/aa6c0e.

    Article  Google Scholar 

  17. Bodnar O, Elster C, Fischer J, Possolo A, Toman B. Evaluation of uncertainty in the adjustment of fundamental constants. Metrologia 2016;53:S46–S54. https://doi.org/10.1088/0026-1394/53/1/s46.

    Article  Google Scholar 

  18. BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP, OIML. 2011. Supplement 2 to the ‘Guide to the Expression of Uncertainty in Measurement’ – Extension to any number of output quantities, JCGM 102:2011 (BIPM).

  19. Lafarge T, Possolo A. The NIST Uncertainty Machine. NCSLI Measure 2015;10:20–27.

    Article  Google Scholar 

  20. Danzer K, Currie LA. Guidelines for calibration in analytical chemistry. Part I. Fundamentals and single component calibration (IUPAC Recommendations 1998). Pure Appl Chem 1998;70:993–1014. https://doi.org/10.1351/pac199870040993.

    Article  CAS  Google Scholar 

  21. Carroll RJ, Ruppert D, Stefanski LA, Crainiceanu CM. 2006. Measurement Error in Nonlinear Models: A Modern Perspective, Second Edition (Chapman and Hall/CRC) ISBN 1584886331 .

  22. Coplen TB, Shrestha Y. 2016. Isotope-abundance variations and atomic weights of selected elements: 2016 (IUPAC Technical Report). Pure and Applied Chemistry 88.

  23. Callier V. Have a sweet tooth? New blood test could tell. Science 2015;348:488–488. https://doi.org/10.1126/science.348.6234.488.

    Article  CAS  Google Scholar 

  24. Possolo A, Toman B. Assessment of measurement uncertainty via observation equations. Metrologia 2007; 44:464–475. https://doi.org/10.1088/0026-1394/44/6/005.

    Article  Google Scholar 

Download references

Acknowledgments

The authors have benefited from discussions with Blaza Toman, National Institute of Standards and Technology, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juris Meija.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Electronic supplementary material

The Electronic Supporting information contains all relevant R codes in an Excel file from where they can be executed with the help of Excel-R interface made possible by the R package excel.link.

Published in the topical collection celebrating ABCs 16th Anniversary.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 4.69 KB)

(XLSM 70.7 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meija, J., Chartrand, M.M.G. Uncertainty evaluation in normalization of isotope delta measurement results against international reference materials. Anal Bioanal Chem 410, 1061–1069 (2018). https://doi.org/10.1007/s00216-017-0659-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-017-0659-1

Keywords

Navigation