Skip to main content
Log in

Required hydrophobicity of fluorescent reporters for phosphatidylinositol family of lipid enzymes

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The phosphatidylinositol (PtdIns) family of lipids plays important roles in cell differentiation, proliferation, and migration. Abnormal expression, mutation, or regulation of their metabolic enzymes has been associated with various human diseases such as cancer, diabetes, and bipolar disorder. Recently, fluorescent derivatives have increasingly been used as chemical probes to monitor either lipid localization or enzymatic activity. However, the requirements of a good probe have not been well defined, particularly modifications on the diacylglycerol side chain partly due to challenges in generating PtdIns lipids. We have synthesized a series of fluorescent PtdIns(4,5)P2 (PIP2) and PtdIns (PI) derivatives with various lengths of side chains and tested their capacity as substrates for PI3KIα and PI4KIIα, respectively. Both capillary electrophoresis and thin-layer chromatography were used to analyze enzymatic reactions. For both enzymes, the fluorescent probe with a longer side chain functions as a better substrate than that with a shorter chain and works well in the presence of the endogenous lipid, highlighting the importance of hydrophobicity of side chains in fluorescent phosphoinositide reporters. This comparison is consistent with their interactions with lipid vesicles, suggesting that the binding of a fluorescent lipid with liposome serves as a standard for assessing its utility as a chemical probe for the corresponding endogenous lipid. These findings are likely applicable to other lipid enzymes where the catalysis takes place at the lipid-water interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Scheme 2

Similar content being viewed by others

References

  1. Balla T. Phosphoinositides: tiny lipids with giant impact on cell regulation. Physiol Rev. 2013;93:1019–137.

    Article  CAS  Google Scholar 

  2. Skwarek LC, Boulianne GL. Great expectations for PIP: phosphoinositides as regulators of signaling during development and disease. Dev Cell. 2009;16:12–20.

    Article  CAS  Google Scholar 

  3. Vicinanza M, D'Angelo G, Di Campli A, De Matteis MA. Phosphoinositides as regulators of membrane trafficking in health and disease. Cell Mol Life Sci. 2008;65:2833–41.

    Article  CAS  Google Scholar 

  4. Di Paolo G, De Camilli P. Phosphoinositides in cell regulation and membrane dynamics. Nature. 2006;443:651–7.

    Article  Google Scholar 

  5. Vicinanza M, D'Angelo G, Di Campli A, De Matteis MA. Function and dysfunction of the PI system in membrane trafficking. EMBO J. 2008;27:2457–70.

    Article  CAS  Google Scholar 

  6. Downes CP, Gray A, Lucocq JM. Probing phosphoinositide functions in signaling and membrane trafficking. Trends Cell Biol. 2005;15:259–68.

    Article  CAS  Google Scholar 

  7. Weber G. Down-regulation of increased signal transduction capacity in human cancer cells. Adv Enzym Regul. 2005;45:37–51.

    Article  CAS  Google Scholar 

  8. Tronchere H, Laporte J, Pendaries C, Chaussade C, Liaubet L, Pirola L, et al. Production of phosphatidylinositol 5-phosphate by the phosphoinositide 3-phosphatase myotubularin in mammalian cells. J Biol Chem. 2004;279:7304–12.

    Article  CAS  Google Scholar 

  9. Takasuga S, Sasaki T. Phosphatidylinositol-3,5-bisphosphate: metabolism and physiological functions. J Biochem. 2013;154:211–8.

    Article  CAS  Google Scholar 

  10. Ferguson CJ, Lenk GM, Meisler MH. PtdIns(3,5)P2 and autophagy in mouse models of neurodegeneration. Autophagy. 2009;6:170–1.

    Article  Google Scholar 

  11. Network CGAR. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature. 2008;455:1061–8.

    Article  Google Scholar 

  12. Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS, et al. Integrative genomic profiling of human prostate cancer. Cancer Cell. 2010;18:11–22.

    Article  CAS  Google Scholar 

  13. Suwa A, Kurama T, Shimokawa T. SHIP2 and its involvement in various diseases. Expert Opin Ther Targets. 2010;14:727–37.

    Article  CAS  Google Scholar 

  14. Shepard CR, Kassis J, Whaley DL, Kim HG, Wells A. PLC-g contributes to metastasis of in situ-occurring mammary and prostate tumors. Oncogene. 2007;26:3020–6.

    Article  CAS  Google Scholar 

  15. Bertagnolo V, Benedusi M, Brugnoli F, Lanuti P, Marchisio M, Querzoli P, et al. Phospholipase C-b2 promotes mitosis and migration of human breast cancer-derived cells. Carcinogenesis. 2007;28:1638–45.

    Article  CAS  Google Scholar 

  16. Sala G, Dituri F, Raimondi C, Previdi S, Maffucci T, Mazzoletti M, et al. Phospholipase C-g1 is required for metastasis development and progression. Cancer Res. 2008;68:10187–96.

    Article  CAS  Google Scholar 

  17. Shi TJ, Liu SX, Hammarberg H, Watanabe M, Xu ZQ, Hokfelt T. Phospholipase C-b3 in mouse and human dorsal root ganglia and spinal cord is a possible target for treatment of neuropathic pain. Proc Natl Acad Sci U S A. 2008;105:20004–8.

    Article  CAS  Google Scholar 

  18. Rusten TE, Stenmark H. Analyzing phosphoinositides and their interacting proteins. Nat Methods. 2006;3:251–8.

    Article  CAS  Google Scholar 

  19. Idevall-Hagren O, De Camilli P. Detection and manipulation of phosphoinositides. Biochim Biophys Acta. 2015;1851:736–45.

    Article  CAS  Google Scholar 

  20. Hokin LE, Hokin MR. Phosphoinositides and protein secretion in pancreas slices. J Biol Chem. 1958;233:805–10.

    CAS  Google Scholar 

  21. Whitman M, Downes CP, Keeler M, Keller T, Cantley L. Type-I phosphatidylinositol kinase makes a novel inositol phospholipid, phosphatidylinositol-3-phosphate. Nature. 1988;332:644–6.

    Article  CAS  Google Scholar 

  22. Wenk MR, Lucast L, Di Paolo G, Romanelli AJ, Suchy SF, Nussbaum RL, et al. Phosphoinositide profiling in complex lipid mixtures using electrospray ionization mass spectrometry. Nat Biotechnol. 2003;21:813–7.

    Article  CAS  Google Scholar 

  23. Ogiso H, Taguchi R. Reversed-phase LC/MS method for polyphosphoinositide analyses: changes in molecular species levels during epidermal growth factor activation in A431 cells. Anal Chem. 2008;80:9226–32.

    Article  CAS  Google Scholar 

  24. Pettitt TR, Dove SK, Lubben A, Calaminus SD, Wakelam MJ. Analysis of intact phosphoinositides in biological samples. J Lipid Res. 2006;47:1588–96.

    Article  CAS  Google Scholar 

  25. Balla T. Inositol-lipid binding motifs: signal integrators through protein-lipid and protein-protein interactions. J Cell Sci. 2005;118:2093–104.

    Article  CAS  Google Scholar 

  26. Hardie RC, Liu CH, Randall AS, Sengupta S. In vivo tracking of phosphoinositides in Drosophila photoreceptors. J Cell Sci. 2015;128:4328–40.

    Article  CAS  Google Scholar 

  27. Weber S, Wagner M, Hilbi H. Live-cell imaging of phosphoinositide dynamics and membrane architecture during Legionella infection. MBio. 2014;5:e00839–13.

    Article  Google Scholar 

  28. Yoon Y, Lee PJ, Kurilova S, Cho W. In situ quantitative imaging of cellular lipids using molecular sensors. Nat Chem. 2011;3:868–74.

    Article  CAS  Google Scholar 

  29. Liu SL, Sheng R, O'Connor MJ, Cui Y, Yoon Y, Kurilova S, et al. Simultaneous in situ quantification of two cellular lipid pools using orthogonal fluorescent sensors. Angew Chem Int Ed Engl. 2014;53:14387–91.

    Article  CAS  Google Scholar 

  30. Huang W, Jiang D, Wang X, Wang K, Sims CE, Allbritton NL, et al. Kinetic analysis of PI3K reactions with fluorescent PIP2 derivatives. Anal Bioanal Chem. 2011;401:1881–8.

    Article  CAS  Google Scholar 

  31. Wright BD, Simpson C, Stashko M, Kireev D, Hull-Ryde EA, Zylka MJ, et al. Development of a high-throughput screening assay to identify inhibitors of the lipid kinase PIP5K1C. J Biomol Screen. 2015;20:655–62.

    Article  CAS  Google Scholar 

  32. Jiang DC, Sims CE, Allbritton NL. Single-cell analysis of phosphoinositide 3-kinase and phosphatase and tensin homolog activation. Faraday Discuss. 2011;149:187–200.

    Article  CAS  Google Scholar 

  33. Wang K, Jiang D, Sims CE, Allbritton NL. Separation of fluorescently labeled phosphoinositides and sphingolipids by capillary electrophoresis. J Chromatogr B Analyt Technol Biomed Life Sci. 2012;907:79–86.

    Article  CAS  Google Scholar 

  34. Meredith GD, Sims CE, Soughayer JS, Allbritton NL. Measurement of kinase activation in single mammalian cells. Nat Biotechnol. 2000;18:309–12.

    Article  CAS  Google Scholar 

  35. Barnett SF, Ledder LM, Stirdivant SM, Ahern J, Conroy RR, Heimbrook DC. Interfacial catalysis by phosphoinositide 3′-hydroxykinase. Biochemistry. 1995;34:14254–62.

    Article  CAS  Google Scholar 

  36. Martin SF, Pitzer GE. Solution conformations of short-chain phosphatidylcholine. Substrates of the phosphatidylcholine-preferring PLC of Bacillus cereus. Biochim Biophys Acta. 2000;1464:104–12.

    Article  CAS  Google Scholar 

  37. Kim K, McCully ME, Bhattacharya N, Butler B, Sept D, Cooper JA. Structure/function analysis of the interaction of phosphatidylinositol 4,5-bisphosphate with actin-capping protein: implications for how capping protein binds the actin filament. J Biol Chem. 2007;282:5871–9.

    Article  CAS  Google Scholar 

  38. Klink TA, Kleman-Leyer KM, Kopp A, Westermeyer TA, Lowery RG. Evaluating PI3 kinase isoforms using TranscreenerTM ADP assays. J Biomol Screen. 2008;13:476–85.

    Article  CAS  Google Scholar 

  39. Carpenter CL, Duckworth BC, Auger KR, Cohen B, Schaffhausen BS, Cantley LC. Purification and characterization of phosphoinositide 3-kinase from rat-liver. J Biol Chem. 1990;265:19704–11.

    CAS  Google Scholar 

  40. Proctor A, Herrera-Loeza SG, Wang Q, Lawrence DS, Yeh JJ, Allbritton NL. Measurement of protein kinase B activity in single primary human pancreatic cancer cells. Anal Chem. 2014;86:4573–80.

    Article  CAS  Google Scholar 

  41. Chen J, Profit AA, Prestwich GD. Synthesis of photoactivatable 1,2-O-diacyl-sn-glycerol derivatives of 1-L-phosphatidyl-D-myo-inositol 4,5-bisphosphate (PtdInsP(2)) and 3,4,5-trisphosphate (PtdInsP(3)). J Org Chem. 1996;61:6305–12.

    Article  CAS  Google Scholar 

  42. Kubiak RJ, Bruzik KS. Comprehensive and uniform synthesis of all naturally occurring phosphorylated phosphatidylinositols. J Org Chem. 2003;68:960–8.

    Article  CAS  Google Scholar 

  43. Ozaki S, DeWald DB, Shope JC, Chen J, Prestwich GD. Intracellular delivery of phosphoinositides and inositol phosphates using polyamine carriers. Proc Natl Acad Sci U S A. 2000;97:11286–91.

    Article  CAS  Google Scholar 

  44. Bigay J, Casella JF, Drin G, Mesmin B, Antonny B. ArfGAP1 responds to membrane curvature through the folding of a lipid packing sensor motif. EMBO J. 2005;24:2244–53.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the National Institutes of Health (GM086558 to Q.Z., CA177993 to N.A.), the American Foundation for Pharmaceutical Education (fellowship to J.W.), and the Eshelman Institute for Innovation (award to W.H.) for funding this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qisheng Zhang.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Electronic supplementary material

ESM 1

(PDF 6819 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Waybright, J., Huang, W., Proctor, A. et al. Required hydrophobicity of fluorescent reporters for phosphatidylinositol family of lipid enzymes. Anal Bioanal Chem 409, 6781–6789 (2017). https://doi.org/10.1007/s00216-017-0633-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-017-0633-y

Keywords

Navigation