Skip to main content

Advertisement

Log in

Multiplex enrichment quantitative PCR (ME-qPCR): a high-throughput, highly sensitive detection method for GMO identification

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Among all of the high-throughput detection methods, PCR-based methodologies are regarded as the most cost-efficient and feasible methodologies compared with the next-generation sequencing or ChIP-based methods. However, the PCR-based methods can only achieve multiplex detection up to 15-plex due to limitations imposed by the multiplex primer interactions. The detection throughput cannot meet the demands of high-throughput detection, such as SNP or gene expression analysis. Therefore, in our study, we have developed a new high-throughput PCR-based detection method, multiplex enrichment quantitative PCR (ME-qPCR), which is a combination of qPCR and nested PCR. The GMO content detection results in our study showed that ME-qPCR could achieve high-throughput detection up to 26-plex. Compared to the original qPCR, the Ct values of ME-qPCR were lower for the same group, which showed that ME-qPCR sensitivity is higher than the original qPCR. The absolute limit of detection for ME-qPCR could achieve levels as low as a single copy of the plant genome. Moreover, the specificity results showed that no cross-amplification occurred for irrelevant GMO events. After evaluation of all of the parameters, a practical evaluation was performed with different foods. The more stable amplification results, compared to qPCR, showed that ME-qPCR was suitable for GMO detection in foods. In conclusion, ME-qPCR achieved sensitive, high-throughput GMO detection in complex substrates, such as crops or food samples. In the future, ME-qPCR-based GMO content identification may positively impact SNP analysis or multiplex gene expression of food or agricultural samples.

For the first-step amplification, four primers (A, B, C, and D) have been added into the reaction volume. In this manner, four kinds of amplicons have been generated. All of these four amplicons could be regarded as the target of second-step PCR. For the second-step amplification, three parallels have been taken for the final evaluation. After the second evaluation, the final amplification curves and melting curves have been achieved

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Spurgeon SL, Jones RC, Ramakrishnan R. High throughput gene expression measurement with real time PCR in a microfluidic dynamic array. PLoS One. 2008. doi:10.1371/journal.pone.0001662.

    Google Scholar 

  2. Dieckman L, Gu M, Stols L, Donnelly MI, Collart FR. High throughput methods for gene cloning and expression. Protein Expr Purif. 2002;25:1–7. doi:10.1006/prep.2001.1602.

    Article  CAS  Google Scholar 

  3. Pirim H, Ekşioğlu B, Perkins A, Yüceer C. Clustering of high throughput gene expression data. Comput Oper Res. 2012;39:3046–61. doi:10.1016/j.cor.2012.03.008.

    Article  Google Scholar 

  4. Nelson PT, Baldwin DA, Scearce LM, Oberholtzer JC, Tobias JW, Mourelatos Z. Microarray-based, high-throughput gene expression profiling of microRNAs. Nat Methods. 2004;1:155–61. doi:10.1038/nmeth717.

    Article  CAS  Google Scholar 

  5. Hyten DL, Cannon SB, Song Q, Weeks N, Fickus EW, Shoemaker RC, et al. High-throughput SNP discovery through deep resequencing of a reduced representation library to anchor and orient scaffolds in the soybean whole genome sequence. BMC Genomics. 2010;11:38. doi:10.1186/1471-2164-11-38.

    Article  Google Scholar 

  6. Gaur R, Azam S, Jeena G, Khan AW, Choudhary S, Jain M, et al. High-throughput SNP discovery and genotyping for constructing a saturated linkage map of chickpea (Cicer arietinum L.). DNA Res. 2012;19:357–73. doi:10.1093/dnares/dss018.

    Article  CAS  Google Scholar 

  7. Soon WW, Hariharan M, Snyder MP. High-throughput sequencing for biology and medicine. Mol Syst Biol. 2013;9:640. doi:10.1038/msb.2012.61.

    Article  Google Scholar 

  8. Narayan A, Bommakanti A, Patel AA. High-throughput RNA profiling via up-front sample parallelization. Nat Methods. 2015;12:343–6. doi:10.1038/nmeth.3311.

    Article  CAS  Google Scholar 

  9. Römisch-Margl W, Prehn C, Bogumil R, Röhring C, Suhre K, Adamski J. Procedure for tissue sample preparation and metabolite extraction for high-throughput targeted metabolomics. Metabolomics. 2012;8:133–42. doi:10.1007/s11306-011-0293-4.

    Article  Google Scholar 

  10. Zhu Q, Trau D. Gel pad array chip for high throughput and multi-analyte microbead-based immunoassays. Biosens Bioelectron. 2015;66:370–8. doi:10.1016/j.bios.2014.10.083.

    Article  CAS  Google Scholar 

  11. Xie L, Yan X, Du Y. An aptamer based wall-less LSPR array chip for label-free and high throughput detection of biomolecules. Biosens Bioelectron. 2014;53:58–64. doi:10.1016/j.bios.2013.09.031.

    Article  CAS  Google Scholar 

  12. Schonbrun E, Abate AR, Steinvurzel PE, Weitz DA, Crozier KB. High-throughput fluorescence detection using an integrated zone-plate array. Lab Chip. 2010;10:852–6. doi:10.1039/b923554j.

    Article  CAS  Google Scholar 

  13. Sun M, Fang Q. High-throughput sample introduction for droplet-based screening with an on-chip integrated sampling probe and slotted-vial array. Lab Chip. 2010;10:2864–8. doi:10.1039/c005290f.

    Article  CAS  Google Scholar 

  14. Shendure J, Ji H. Next-generation DNA sequencing. Nat Biotechnol. 2008;26:1135–45. doi:10.1038/nbt1486.

    Article  CAS  Google Scholar 

  15. Reuter JA, Spacek DV, Snyder MP. High-throughput sequencing technologies. Mol Cell. 2015;58:586–97. doi:10.1016/j.molcel.2015.05.004.

    Article  CAS  Google Scholar 

  16. Kircher M, Kelso J. High-throughput DNA sequencing—concepts and limitations. BioEssays. 2010;32:524–36. doi:10.1002/bies.200900181.

    Article  CAS  Google Scholar 

  17. Willems S, Fraiture M-A, Deforce D, De Keersmaecker SCJ, De Loose M, Ruttink T, et al. Statistical framework for detection of genetically modified organisms based on next generation sequencing. Food Chem. 2016;192:788–98. doi:10.1016/j.foodchem.2015.07.074.

    Article  CAS  Google Scholar 

  18. Taylor SM, Juliano JJ, Trottman PA, Griffin JB, Landis SH, Kitsa P, et al. High-throughput pooling and real-time PCR-based strategy for malaria detection. J Clin Microbiol. 2010;48:512–9. doi:10.1128/JCM.01800-09.

    Article  CAS  Google Scholar 

  19. Peham JR, Vellekoop MJ, Nohammer C, Wiesinger-Mayr H. PCR product detector with LED-photodiode fluorescence sensing in a nanoliter flow-cell for the high-throughput detection of double-stranded DNA. In: Procedia Eng; 2011. pp 936–939.

  20. Taniuchi M, Verweij JJ, Noor Z, Sobuz SU, Van Lieshout L, Petri WA, et al. High throughput multiplex PCR and probe-based detection with luminex beads for seven intestinal parasites. Am J Trop Med Hyg. 2011;84:332–7. doi:10.4269/ajtmh.2011.10-0461.

    Article  CAS  Google Scholar 

  21. Schmittgen TD, Lee EJ, Jiang J. High-throughput real-time PCR. Methods Mol Biol. 2008;429:89–98. doi:10.1007/978-1-60327-040-3_7.

    Article  CAS  Google Scholar 

  22. James C. Global status of commercialized biotech/GM crops: 2015. China Biotechnol. 2016;31:1–17.

    Google Scholar 

  23. Delobel C, Foti N, Mazzara M, Van den Eede G. Event-specific method for the quantification of maize event 3272 using real-time PCR PROTOCOL. In: EU Database Ref. Methods GMO Anal. 2008. http://gmo-crl.jrc.ec.europa.eu/gmomethods/search?db=gmometh&q=id:QT-eve-zm*. Accessed 1 Jan 2008

  24. Xu W, Yuan Y, Luo Y, Bai W, Zhang C, Huang K. Event-specific detection of stacked genetically modified maize Bt11 x GA21 by UP-M-PCR and real-time PCR. J Agric Food Chem. 2009;57:396–402. doi:10.1021/jf802323m.

    Google Scholar 

  25. Delobel C, Bonfini L, Querci M, Mazzara M, Cordeil S, Van den Eede G. Event-specific method for the quantification of maize Bt176 using real-time PCR protocol. In: EU Database Ref. Methods GMO Anal. 2007. http://gmo-crl.jrc.ec.europa.eu/gmomethods/search?db=gmometh&q=id:QT-eve-zm*. Accessed 1 Jan 2007

  26. Delobel C, Bonfini L, Querci M, Mazzara M, Cordeil S, Van den Eede G. Quantitative PCR method for detection of maize event MON810. In: EU Database Ref. Methods GMO Anal. 2006. http://gmo-crl.jrc.ec.europa.eu/gmomethods/search?db=gmometh&q=id:QT-eve-zm*. Accessed 1 Jan 2006

  27. Mazzara M, Cordeil S, Van den Eede G. Event-specific method for the quantitation of maize line MON863 using real-time PCR. In: EU Database Ref. Methods GMO Anal. 2005. http://gmo-crl.jrc.ec.europa.eu/gmomethods/docs/QT-EVE-ZM-009.pdf. Accessed 16 Feb 2005

  28. Xu W, Zhai Z, Huang K, Zhang N, Yuan Y, Shang Y, et al. A novel universal primer-multiplex-PCR method with sequencing gel electrophoresis analysis. PLoS One. 2012. doi:10.1371/journal.pone.0022900.

    Google Scholar 

  29. Myakishev MV, Khripin Y, Hu S, Hamer DH. High-throughput SNP genotyping by allele-specific PCR with universal energy-transfer-labeled primers. Genome Res. 2001;11:163–9. doi:10.1101/gr.157901.

    Article  CAS  Google Scholar 

  30. Gryson N, Messens K, Dewettinck K. Evaluation and optimisation of five different extraction methods for soy DNA in chocolate and biscuits. Extraction of DNA as a first step in GMO analysis. J Sci Food Agric. 2004;84:1357–63. doi:10.1002/jsfa.1767.

    Article  CAS  Google Scholar 

  31. Arumuganathan K, Earle E. Nuclear DNA content of some important plant species. Plant Mol Biol Report. 1991;9:208–18.

    Article  CAS  Google Scholar 

  32. Arya M, Shergill IS, Williamson M, Gommersall L, Arya N, Patel HRH. Basic principles of real-time quantitative PCR. Expert Rev Mol Diagn. 2005;5:209–19. doi:10.1385/MB:15:2:115.

    Article  CAS  Google Scholar 

  33. Lau A, Sorrell TC, Chen S, Stanley K, Iredell J, Halliday C. Multiplex tandem PCR: a novel platform for rapid detection and identification of fungal pathogens from blood culture specimens. J Clin Microbiol. 2008;46:3021–7. doi:10.1128/JCM.00689-08.

    Article  CAS  Google Scholar 

  34. Stanley KK, Szewczuk E. Multiplexed tandem PCR: gene profiling from small amounts of RNA using SYBR Green detection. Nucleic Acids Res. 2005. doi:10.1093/nar/gni182.

    Google Scholar 

  35. Shang Y, Zhu P, Xu W, Guo T, Tian W, Luo Y, et al. Single universal primer multiplex ligation-dependent probe amplification with sequencing gel electrophoresis analysis. Anal Biochem. 2013;443:243–8. doi:10.1016/j.ab.2013.09.012.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Grand Project of Science and Technology (2016ZX08012-001), the Science and Technology Planning Project of Guangdong Province (2014A040401029), and the Science and Technology Planning Project of Guangzhou (2014J4100105).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feiwu Li or Shuifang Zhu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 153 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, W., Zhu, P., Wei, S. et al. Multiplex enrichment quantitative PCR (ME-qPCR): a high-throughput, highly sensitive detection method for GMO identification. Anal Bioanal Chem 409, 2655–2664 (2017). https://doi.org/10.1007/s00216-017-0209-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-017-0209-x

Keywords

Navigation